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Abstract
This thesis investigates how deep learning neural networks can solve two significant
problems that currently hinder the field of atomic resolution transmission electron
microscopy. The first problem is the large-scale analysis of data. Reliable information
for materials design must be quantitative and statistically significant. While modern
electron microscopes can produce large data sets of high resolution images, the data
is typically analysed manually by an electron microscopist, which is a tedious and
time-consuming task.

The second issue is the problem of electron beam influence on the material samples.
The high-energy electrons in a microscope will inevitably influence the sample, both
by directly damaging it and by inducing diffusion and chemical reactions.

To tackle these issues, the thesis presents a software pipeline that utilises simulated
high-resolution transmission electron microscopy (HR-TEM) images to train robust
neural networks. The software pipeline generates thousands of varied atomic systems
of oxide supported metallic nanoparticles and 2-Dimensional monolayer nanoflakes.
From these atomic systems, the user can generate thousands of HR-TEM images with
assorted microscope conditions, by varying the contrast transfer function, presence
of noise and the modulation transfer function, which enables image simulations for
different electron detectors. The generated HR-TEM images are then paired with a
ground truth label that defines the task the neural network should solve. The user can
select from three labels: Mask labels, Disk labels, and Exitwave labels.

A study was made training neural networks with Exitwave labels paired with im-
ages of MoS2 nanoflakes (2H phase) to perform exit wave reconstructions. The study
presents that neural networks can perform exit wave reconstructions with smaller fo-
cal series and no information of the specific CTF parameters that are comparable to
traditional algorithms. The exit waves reconstructed by the neural networks permit
structural determination of 1Mo, 2S, and 1S atomic columns via Argand plots, but were
limited in differentiating 1S atomic columns that exist in the upper or lower sulphur
layer with respect to the optical axis. The study also shows that the neural networks
perform best when trained on data sets of a single type of atomic system with minimal
complexity.

Neural networks trained with Mask labels can perform binary segmentations of Au
nanoparticles on CeO2. The binary segmentation maps can be separated via a wa-
tershed algorithm, producing a multi-valued map that separates every instance of a
nanoparticle in the image. Tools are implemented in a graphical user interface based
software to track these instances across all frames. These tools facilitate large-scale
data analysis by allowing for properties of each instance to be contained across frames
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and extracted by the user with the click of a button. This work shows that the segmen-
tations can be leveraged to provide Fourier transforms of each isolated nanoparticle
across all frames with a high enough resolution that crystal planes corresponding to
different regions of a twinned nanoparticle can be easily distinguished. These tools
allow for a statistically significant quantification of various dynamic properties.

The thesis presents a study that gauges the ability of the U-net and MSD-net neural
network architectures included in the software pipeline to perform mask segmentations
at low signal-to-noise ratios. The study identifies a lower limit for a reliable neural
network segmentation of a CeO2 supported Au nanoparticle at 200 e−

/Å2. The MSD-
net presents an enhanced ability to differentiate between signal and noise and perform
reasonable segmentations below the lower limit of the training data, which shows a
strong generalisability. The study also highlights the importance of modelling the
modulation transfer function to optimise the segmentations by the neural networks
in all electron dose regimes. This provides intuition into the minimal electron beam
conditions that still allow for reliable neural network data extraction.

Disk labels are shown to train neural networks to perform multi-class segmentations
of individual atomic columns in monolayer MoS2 nanoflakes (2H phase). Multi-class
segmentation consists of both identifying the 1Mo, 2S, and 1S atomic columns and clas-
sifying them. The U-net, U-net++, and MSD-net neural network architectures in the
software pipeline all display a powerful ability to perform the multi-class segmentation
when provided a simulated focal series of at least 3 HR-TEM images over a large range
of microscope conditions. This presents the ability for neural networks to interpret the
intricate intensity variations in HR-TEM images and classify various atomic columns
to identify local structure and defects in monolayer MoS2.

This work shows that deep learning neural networks provide a powerful tool for
analysing atomic-resolution image sequences captured by transmission electron micro-
scopes. The thesis presents a software pipeline that allows for the generation of large
and diverse data sets, the pairing of simulated images with ground truth labels, the
training of multiple neural network architectures, and tools to apply the trained neural
networks for various tasks. The work also highlights the limitations of neural net-
works and the importance of modelling noise parameters to optimise results. Overall,
this work contributes to the field of electron microscopy and paves the way for future
automated analysis of atomic-resolution transmission electron microscopy data.



Resumé
Denne afhandling undersøger, hvordan deep learning neurale netværk kan løse to
væsentlige problemer, der i øjeblikket holder transmissions elektronmikroskopi med
atomar opløsning tilbage. Det første problem er datamængden. Pålidelig informa-
tion til materialedesign skal være kvantitativ og statistisk signifikant. Mens moderne
elektronmikroskoper kan producere store datasæt af billeder i høj opløsning, analy-
seres dataene typisk manuelt af en elektronmikroskopist, hvilket er en besværlig og
tidskrævende opgave.

Det andet problem er elektronstrålens påvirkning af materialeprøverne. Elektronerne
i et elektronmikroskop har meget høj energi, og vil uundgåeligt påvirke prøven, både
ved direkte at beskadige den og ved at inducere diffusion og kemiske reaktioner.

For at imødegå disse problemer præsenterer denne afhandling en metodlogi og soft-
warepakke, der anvender simulerede højopløsnings transmissions elektronmikroskopi
(HR-TEM) billeder til at træne robuste neurale netværk. Softwarepakken genererer
tusindvis af forskellige atomare systemer af oxid-understøttede metalliske nanopartik-
ler og 2-Dimensionel monolags nanoflager. Ud fra disse atomsystemer kan brugeren
generere tusindvis af HR-TEM-billeder med forskellige mikroskopforhold ved at variere
kontrast-overførselsfunktionen, tilstedeværelsen af støj og modulations-overførsels-
funktionen. Sidstnævnte giver mulighed for billedsimuleringer for forskellige elektron-
detektorer. De genererede HR-TEM-billeder tilskrives derefter en ground-truth-label,
der definerer den opgave, som det neurale netværk skal løse. Brugeren kan vælge
mellem tre labels: Mask-labels, Disk-labels og Exitwave-labels.

Der blev gennemført en undersøgelse om træning af neurale netværk med Exitwave-
labels parret med billeder af MoS2 nanoflakes (2H-fase) for at udføre udgangsbølge-
rekonstruktioner. Undersøgelsen viser, at neurale netværk kan udføre udgangsbølge-
rekonstruktioner med mindre fokusserier og ingen information om de specifikke CTF-
parametre, der kan konkurrere med traditionelle algoritmer. Udgangsbølgerne rekon-
strueret af de neurale netværk tillader strukturel bestemmelse af 1Mo-, 2S- og 1S-
atomsøjler via Argand-plot, men var ikke i stand til at differentiere enkelte svovlatom-
mer, der optræder i det øverste eller nederste svovllag. Undersøgelsen viser også, at de
neurale netværk fungerer bedst, når de trænes på datasæt af en enkelt type atomsystem
med minimal kompleksitet.

Neurale netværk trænet med Mask-labels kan udføre binære segmenteringer af Au-
nanopartikler på CeO2. De binære segmenteringsbilleder kan adskilles via en watershed-
algoritme, der producerer et billede med flere værdier, der adskiller hver nanopartikel
i billedet. Værktøjer er implementeret i en grafisk bruger-interface baseret software til
at spore nanopartiklerne på tværs af alle frames. Disse værktøjer muliggøre storskala
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dataanalyse ved at tillade egenskaber for hver instans at blive sporet på tværs af billeder
og udtrukket af brugeren med et klik på en knap. Det vises, at segmenteringerne kan
udnyttes til at finde Fourier-transformationer af hver isoleret nanopartikel på tværs af
alle billeder med en høj nok opløsning til, at krystalplaner, der svarer til forskellige
regioner af en tvilling nanopartikel, let kan skelnes. Disse værktøjer giver mulighed for
en statistisk signifikant kvantificering af forskellige dynamiske egenskaber.

Afhandlingen præsenterer en undersøgelse, der måler evnen af de to forskellige neu-
rale netværksarkitekturer (U-net og MSD-net) inkluderet i softwarepakken til at ud-
føre maskesegmenteringer ved lave signal-til-støj-forhold. Undersøgelsen identificerer
en nedre grænse for pålidelig neural netværkssegmentering af en CeO2-understøttet
Au-nanopartikel ved 200 e−

/Å2. MSD-nettet præsenterer en forbedret evne til at
skelne mellem signal og støj og til at udføre rimelige segmenteringer under den nedre
grænse for træningsdataene, hvilket viser en stærk generaliserbarhed. Undersøgelsen
fremhæver også vigtigheden af at modellere modulations-overførselsfunktionen for at
optimere segmenteringerne af de neurale netværk i alle elektrondosisregimer. Dette
giver indsigt i de minimale elektronstråleforhold, der stadig giver mulighed for pålidelig
udtrækning af data med neurale netværk.

Disk-labels præsenteres som en måde at træne neurale netværk til at udføre multi-
klasse segmenteringer af individuelle atomare kolonner i monolag MoS2 nanoflakes
(2H fase). Multi-klasse segmentering består af både identifikation af 1Mo, 2S og
1S atomare kolonner samt deres klassificering. U-net, U-net++ og MSD-net neurale
netværksarkitekturerne i softwarepakken viser alle en god evne til at udføre multi-klasse
segmentering over et stort område af mikroskopforhold, når der leveres en simuleret
fokalserie på mindst 3 HR-TEM billeder. Dette illusterer neurale netværks evne til
at fortolke de indviklede intensitetsvariationer i HR-TEM-billeder og til at klassifi-
cere forskellige atomsøjler for at identificere lokal struktur og defekter, for eksempel i
monolag MoS2.

Dette afhandling viser, at deep learning neurale netværk er et kraftfuldt værktøj til
at analysere billedsekvenser med atomar opløsning optaget af transmissions elektron-
mikroskoper. Afhandlingen præsenterer en softwarepakke, der giver mulighed for at
generere store og forskellige datasæt, parring af simulerede billeder med ground-truth-
labels, træning af flere neurale netværksarkitekturer og værktøjer til at anvende de
trænede neurale netværk til forskellige opgaver. Afhandlingen fremhæver også begræn-
sningerne af neurale netværk og vigtigheden af at modellere støjparametre for at opti-
mere resultaterne. Samlet set bidrager afhandlingen til elektronmikroskopiforskningen
og baner vejen for fremtidig automatiseret analyse af data fra transmissions elektron-
mikroskopi med atomar opløsning.
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Introduction
Materials science is crucial for society as it plays a vital role in shaping our daily lives
and drives technological advancements. A booming field within materials science is the
development of catalysts and semiconductor technology. Catalysts are materials that
increase the rate of chemical reactions, and are used in a wide range of applications,
including fuel cells, refining and petrochemical processing, and environmental control
technologies [1, 2]. Semiconductors are used in a variety of electronic devices, including
computer chips, solar cells, and light-emitting diodes [3]. The development of new
catalysts and semiconductors requires a deep understanding of the materials’ properties
and behaviour, as well as their structure and composition at the atomic level.

Scientists have an intimate relationship with their tools that allow them to see be-
yond the limitations of the human eye. Telescopes open doors to the distant universe
beyond our planet and optical microscopes allow them to see microorganisms that are
present all around us. Materials scientists use a range of tools and techniques, including
electron microscopy and image processing, to study and understand the properties and
behaviour of materials at the atomic scale. Electron microscopy is a technique that
uses a beam of electrons to create an image of a sample. The electrons are accelerated
to high energies with velocities in the relativistic regime. The wavelengths achieved al-
low scientists to observe very small structures, including those that are too small to be
seen with an optical microscope. To be more specific, electron microscopes allow for up
to 50 million times magnification, which vastly exceeds the optical microscope of about
1000 times magnification. The large magnification achieves atomic-resolution imag-
ing, which is at the nanometer scale. There are several types of electron microscopes,
including the transmission electron microscope (TEM) and the scanning electron mi-
croscope (SEM). In TEM, the electron beam is transmitted through the sample, in
contrast to SEM, where the electron beam is focused and scanned over the surface of
the sample. Microscopes today are designed to operate in either TEM or SEM modes,
and the SEM mode of such a microscope is referred to as scanning transmission electron
microscopy (STEM).

Machine learning, and in particular deep learning [4], have revolutionised fields
such as image analysis [5, 6], speech recognition [7], self-driving cars [8], among many
others. The field of bio-medicine was one of the first to adopt deep learning models,
known as neural networks, for analysis on data from various scientific imaging meth-
ods [9, 10]. Given the success in bio-medical imaging, it is no surprise that materials
scientists can equip similar methods for their image analysis. One specific area where
deep learning is arguably necessary is high-resolution transmission electron mi-
croscopy (HR-TEM). HR-TEM is of central importance for modern materials design
and development, as it is the main method for directly observing the atomic-scale struc-
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ture of materials. HR-TEM offers atomic scale imaging with a time resolution that
exceeds STEM, allowing for a more detailed analysis of atom dynamics in materials
samples. The pixel intensities in a HR-TEM image make it difficult to apply traditional
methods, such as thresholding methods, to separate and analyse regions of the image.
Probing the positions of atoms and extracting information is exceedingly difficult, but
deep learning based processing tools have proven themselves to be efficient in doing
exactly that [11, 12], alongside gathering statistically significant data on the shapes,
sizes, and orientation of nanoparticles [13], segmenting and classifying nanoparticles
[14], retrieving phase information [15], and more [16].

Deep learning can help solve two specific and critical problems that hold back the
field. The first is the problem of large-scale data analysis, and it is well established
that deep learning is solidifying its presence in standard workflows for analysing data
from HR-TEM [17, 18]. For information gathered to provide reliable value as input
for materials design, it must be quantitative and statistically significant. This means
that large amounts of high-resolution data must be acquired and analysed. While
modern electron microscopes can produce rapid image sequences containing gigabytes
or terabytes of data, the data is typically analysed manually by an electron microscopist
looking at each image to determine what is being observed, for example by locating
the atoms. Automated or computer-aided analysis techniques open a whole new way
of using electron microscopy to gather statistically significant data sets, while limiting
operator bias. Despite the efforts already made, the field is still young and there is
ongoing research on the reliability of and optimal conditions for deep learning based
methods for data extraction [19, 20].

The second issue is the problem of beam damage and beam effects. The high-
energy electrons in a microscope will invariably influence the sample, both by directly
damaging the sample, and by inducing diffusion and chemical reactions [21–27]. For
example, it is slowly being realised that many of the dynamical effects observed in
catalytic metallic nanoparticles may be induced by the beam [28]. To obtain a HR-
TEM image with a barely acceptable signal-to-noise (S/N) ratio and atomic resolution,
around 100 electrons pass by each atom in the sample; high quality images require at
least ten times that electron dose. Operating the microscope in STEM mode further
increases this dose by at least another order of magnitude.

This thesis investigates the extent to which deep learning can address the two high-
lighted problems. An analysis will be made of the limitations to deep learning based
analysis of images and image sequences with a very low S/N ratio, and whether it can
permit imaging under less damaging conditions. Secondly, an investigation into what
deep learning can provide with regards to automated analysis tools enabling users to
process large amounts of data. Deep learning models, like any machine learning model,
are data driven and the accumulation of sufficient data sets by experimental means is a
major limitation. This thesis focuses on the training of deep learning models with sim-
ulated data and the generalisability of these models to experimental data. Simulated
HR-TEM images of various atomic systems will provide large and diverse data sets for
deep learning without any material consumption or manual labour. This project pri-
marily contributes to the United Nation’s Sustainability and Development Goal
(SDG) to ensure sustainable consumption and production patterns. This is a direct
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result of the fact that the investigations will provide knowledge to what extent TEM
users can reduce material damage and consequently material waste, which makes for
a more efficient resource-use in the materials characterisation and research industry.
This ensures an efficient use of natural resources, environmentally sound management
of waste, and reduce waste by prevention of material destruction.

The main result of this work is a software pipeline that can be easily equipped by
users to generate vast data sets and train neural networks for various tasks. These
tasks include the segmentation of metallic nanoparticles, the identification and clas-
sification by segmentation of atomic columns in 2-Dimensional (2D) materials with
multiple chemical species, and exit wave reconstructions of 2D materials. Exit wave
reconstructions retrieve information of the chemical composition and 3-Dimensional
(3D) positions of atomic columns. From the retrieved exit wave, a scientist can manu-
ally identify and classify atomic columns. Exit wave reconstruction serves as another
route with the same goal as the neural network segmentation of atomic columns, but
leverages the neural network in a different way. The strengths and limitations of each
task are highlighted and documented. As an addition to the software pipeline, tools
have been implemented to apply the trained deep learning models for large-scale data
analysis.

Thesis Outline
This work is highly inter-disciplinary, merging the fields of computational atomic-
scale simulations, HR-TEM, and deep learning. The thesis will begin by intro-
ducing the relevant information regarding HR-TEM and deep learning that should be
sufficient to grasp the investigations presented in the thesis. The outline is as follows:

– Chapter 1: This chapter presents the fundamental concepts behind the theoret-
ical modelling of HR-TEM. The electron beam is treated as plane waves incident
on the material sample, which traverse through and interact with the material
potential. The electron wave function present on the other side of the material is
altered by the imperfections present in the microscope before the final image is
formed. An understanding of the steps leading up to the image formation, will be
crucial for the reader to understand the simulations and treatment of HR-TEM
images in the software pipeline.

– Chapter 2: This work leverages the power of deep learning to map complex
features and patterns in the HR-TEM images to outputs that are applicable
for information extraction and more interpretable by a human operator. This
chapter describes the inner workings behind neural networks, one of the main
deep learning based models. Deep learning models adapt weights that are applied
to the input images to transform the images to the desired output. This chapter
is crucial to understanding how the neural networks are trained on the simulated
data and prepared for analysis tools in the software pipeline.

– Chapter 3: The main result of this work is a software pipeline that allows the
user to prepare deep learning neural networks for various tasks applicable to
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images of various materials. This chapter describes the workflow and implemen-
tation of the software pipeline, which consists of data generation, neural network
training, and applied analysis tools for the user. This chapter is important for
the reader to understand the decisions made behind the diversity of the simu-
lated data sets, neural network constructions and training procedures, and how
to equip the neural networks for data extraction.

– Chapter 4: This chapter summarises the main results achieved with the soft-
ware pipeline. These results have been documented into three separate publica-
tions, each tackling the applications and limitations of exit wave reconstructions,
nanoparticle segmentations, and atomic column identification and classification.
This chapter is a highlight of the main results from each publication, where
Chapter 8 contains full reprints of each publication.

– Chapter 5: Chen et al. [29] argue that atomic vibrations are heterogenous
and largely induced by the electron beam. The inclusion of these vibrations
were crucial to a proper analysis of the exit wave function retrieved from HR-
TEM images via traditional algorithms. This chapter provides a novel method
to introducing the heterogeneity of the atomic vibrations into simulated images,
which are inherently static snapshots of an atomic configuration. This method
serves as an extension to the software pipeline.

– Chapter 6: An external collaboration was made with the group behind the
image analysis software, Dragonfly. Together with them tools were implemented
in their software so that the neural networks trained in the software pipeline can
be deployed for large-scale analysis with a graphical user interface, rendering the
tools more accessible to all users. This chapter presents the tools as an extension
to the software pipeline and presents real life examples of the possibilities that
come with the tools.

– Chapter 7: This chapter finalises the thesis with a summary of the above chap-
ters along with final remarks and suggestions on how to proceed with the com-
pleted investigations and findings.

– Chapter 8: This chapter compiles all the publications related with this the-
sis. Chapters 1-3 provide the background knowledge to understand all details
behind every publications. See Chapter 4 for a summary of the main results.



CHAPTER 1
Theory: Modelling The
Electron Microscope

A theoretical model of the electron microscope operating in TEM mode is presented in
Figure 1.1. From top to bottom i.e. along the optical axis, electrons traverse as plane
waves until they meet the material sample, otherwise referred to as the specimen1 [30].

The electrons interact with the electrostatic potential of this specimen and the trans-
mitted wave is known as the exit wave function or simply the “exit wave”. This wave
contains all the information of the material constituents. The exit wave is, however,
subject to alterations by the lenses and other components of the microscope, which

Figure 1.1: A theoretical model of the electron microscope operating in TEM mode. This
illustration depicts the steps between the incident plane wave electron beam to the final image
obtained, shaped by the specimen potential and elements of the microscope. Inspired by Ref.
[30].

1This is different to operating in STEM mode where the electrons are focused into a spot on the
specimen.
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project the exit wave to a final image. This image is then further disrupted by noise
due to the detector.

One of the existing data extraction methods is known as an “exit wave reconstruc-
tion”, which consists of transforming the final image back into the transmitted exit
wave and interpreting this complex wave function to probe the 3-Dimensional posi-
tions of the atoms in the sample [29, 31].

To provide insight into the simulations of HR-TEM images, this section will present
the theory behind modelling each of the steps in Figure 1.1, from top to bottom, start-
ing with the interactions between the specimen and the incident plane wave electrons.

1.1 The Multislice Method
“The principal method of image simulation has come to be known as simply the mul-
tislice method” as said by Earl J. Kirkland [32]. This method handles the dynamical
scattering processes occurring in material samples as thin as 10-50 Å. A full derivation
of the multislice algorithm is presented in Ref. [33]. This derivation begins with the
time independent Schrödinger equation,[

− ℏ2

2m
∇2 − eV (r, z)

]
Ψ(r, z) = EΨ(r, z), (1.1)

where Ψ(r, z) is the full electron wave function, r is defined in the (x,y)-plane perpen-
dicular to the z-axis (optical axis), m = γm0 is the relativistic electron mass, and E
is the kinetic energy of the electron2. Electrons are accelerated in the microscope to
energies between 60-1000 keV, which are far greater than the potential of the mate-
rial sample; Any energy gain or loss of the electrons due to the specimen potential,
eV (r, z), will be far lesser than their kinetic energy. This motivates the high energy
or fast electron approximation, which involves treating the rapidly varying plane wave
along the z-axis separately from the slowly varying part, ψ(r, z),

Ψ(r, z) = ψ(r, z) · e2πiz/λ. (1.2)

Solving for the first and second derivatives cancels out the rapidly varying part, de-
scribed by the exponential term, and the assumption that∣∣∣∣∂2ψ

∂z2

∣∣∣∣ << ∣∣∣∣ 1λ ∂ψ∂z
∣∣∣∣ (1.3)

due to ψ being the slowly varying part in z and λ being very small, simplifies the
expression to first order derivatives in z. This is known as the high-energy approxi-
mation, which is sometimes interpreted as ignoring back-scattered electrons [34]. This
is an appropriate assumption for the high energy electrons present in HR-TEM and

2Strictly speaking, the Dirac equation would be the appropriate description of relativistic electrons,
however is significantly more difficult to work with. The Schrödinger equation with a corrected
relativistic wavelength and mass is therefore preferred and has proved to be accurate enough for most
relevant energies in HR-TEM [30].
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Figure 1.2: The multislice algorithm depicted as a Fresnel diffraction following Huygens’
principle. Every point in slice n acts as a point source and the total interactions of each
point source constructs the next slice. This is defined as a convolution of propagator function,
p(r,∆z). Inspired by Ref. [33].

simplifies the Schrödinger equation to

∂ψ(r, z)
∂z

=
[
iλ

4π
∇2

r + iσeV (r, z)
]
ψ(r, z) ; σe = 2πmeλ

h2 , (1.4)

where σe is the interaction parameter, which scales the interactive term of the electron
and specimen potential depending on the relativistic electron mass and wavelength.
The interaction parameter is almost constant for energies above 300 keV, and increases
rapidly for energies below this [35].

Solving Eq. (1.4) can be approached in multiple ways, but regardless will involve
integrating over small slices (z + ∆z) of the specimen potential. This results in

ψ(r, z + ∆z) = e
iλ∆z

4π ∇2
r · t(r, z) · ψ(r, z) + O(∆z2) (1.5)

where t(r, z) is the transmission function of each slice defined as

t(r, z) = e
iσe

∫ z+∆z

z
V (r,z′)dz′

. (1.6)

The transmission function treats each slice of a thick specimen as a weak phase object;
An object that contributes only with a phase change to the incident wave, which is
an approximation made for thin specimens [35, 36]. Eq. (1.5) can be interpreted as a
convolution,

ψ(r, z + ∆z) = (p(r,∆z) ∗ [t(r, z) · ψ(r, z)])r + O(∆z2), (1.7)

where (∗)r denotes a real space convolution in the (x,y)-plane. This is the governing
equation of the multislice method that propagates the wave function from one slice
of the specimen potential to the next via a convolution of p(r,∆z) known as the
propagator function. The incident wave, ψinc(r), is propagated through slices of the
specimen potential labelled by n as

ψn+1(r) = tn(r) · (pn(r,∆zn) ∗ ψn(r))r + O(∆z2), (1.8)
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which ultimately produces the exit wave, ψew(r). This procedure is depicted in Fig-
ure 1.2 where every slice contributes a phase shift to the latest wave function defined
by the transmission function, and every point in a slice n contributes to a point in the
slice n+ 1, due to the convolution. A physical perspective of this can be described by
Huygen’s principle that each point in a wavefront acts as a spherical point source, and
the next wavefront is the interaction of all the spherical wave fronts from each point
in the previous wavefront [33].

1.2 The Imperfections of the Microscope
In practice the microscope is not perfect. The imperfections include lens aberrations
that cause the wavefronts to deviate from that of a perfect point source and partial
coherence. The final image wave is described as

ψim(r) = (ψew ∗ T )r (1.9)

where T(r) is known as the contrast transfer function (CTF). Performing a Fourier
transform allows for the direct multiplication

ψim(q) = ψew(q) · T (q), (1.10)

which presents the CTF as a spatial frequency filter applied to the exit wave. The
CTF describes the microscope aperture and coherent lens aberrations as a phase error,
χ(q). The formal definition is

T (q) = A(q) · e−iχ(q) (1.11)

where

A(q) =

{
1, for |q| ≤ qA

0, for |q| > qA

(1.12)

is the aperture which cuts off beams scattered above a certain angle, defining a spatial
frequency limit, qA (see Figure 1.3). The phase error is commonly described as a series
expansion [30, 37, 38], which for a well-aligned3 microscope can be approximated as

χ(q) ≈ 1
2
πCsλ

3q4 + π∆fλq2. (1.13)

This definition states that the phase error is controlled by the spherical aberration,
Cs, the defocus, ∆f, and the wavelength, λ. In Krivanek notation [39] the spherical
aberration and defocus are known as Cs ≡ C3,0 and ∆f ≡ −C1,0. In certain cases
higher order aberrations can be important. For details on the full expansion and
higher order coefficients see Refs. [30, 40, 41].

3This refers to the adjustments of the illumination, various lenses, aperture, etc. of the microscope.
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One can speculate that the ideal CTF is unity across all spatial frequencies, such
that it does not alter the original exit wave, however this is not the case. If one allows
for the assumption that the material sample acts purely as a phase object such that

ψew(r) = ψinc(r) · eiϕ(V (r)) (1.14)

with a phase ϕ dependent on V(r), the local potential of the sample. Without the
effects of the CTF means that the obtained image is

|ψim(r)|2 = |ψew(r)|2 = 1 (1.15)

since ψinc(r) is a plane wave with magnitude 1. Under the weak phase approximation
[36], where ϕ << 1 the resulting image with a CTF is

|ψim(r)|2 ≈ 1 + 2(ϕ(V ) ∗ Im(T ))r. (1.16)

The role of the CTF is that it introduces contrast into the image, where the image
intensities are related to the phase.

In practice one can attempt to tune the defocus to obtain an optimal CTF and one
way to do so is to image at Scherzer defocus [36, 42]. The Scherzer defocus attempts
to tune the defocus such that it counter acts the Csq4 term of χ(q) and obtains as
wide of a flat band region as possible. The (extended) Scherzer defocus is defined as

∆fScherzer = −1.2(λCs)1/2. (1.17)

In Figure 1.3 the “zero point crossing” (or “point resolution”) is presented, which is the
first intersect of the imaginary part of the CTF with the zero axis. This is maximised
by the Scherzer defocus to obtain the wide flat band region [43].

Beyond tuning the CTF a combination of high spatial and temporal coherence is es-
sential. Spatial coherence refers to the degree of correlation between the phase of points
along a wavefront of the incident electron beam. A highly spatially coherent beam is
essential for HR-TEM because it allows the electrons to interfere constructively at the
sample, creating high-resolution images. A low spatial coherence beam would produce
low contrast and blurry images. The distribution of angles in the beam direction across
the wavefront is quantified by a parameter β and the distribution of directions qβ is
modelled into T (q) under the thin sample or quasi-coherent approximation [36, 38].
This follows Eq. (1.10) as

ψim(q) = ψew(q) ·
∫
T (q + qβ) · p(qβ) dqβ (1.18)

where

p(qβ) = 1
πq2

s

e−q2
β/q2

s (1.19)

is a Gaussian distribution describing the spread in the beam directions with a 1/e width
of qs = β/λ. The result of evaluating Eq. (1.18) is an envelope function defined as

Ts(q) = e− β2

4λ2 | ∂
∂q χ(q)|2

. (1.20)
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Figure 1.3: Total transfer function due to microscope imperfections with an acceleration
voltage of 300 keV and a Cs = 5 µm, which gives a Scherzer defocus of 38.43 Å.

Temporal coherence refers to the degree to which the phase of points on separate
wavefronts of the electron beam correlate in time (in the direction of propagation). Any
temporal incoherence can be due to minor spreads of energy which produce a more
significant spread in focal length of the objective lens. Similar to the integral over the
distribution directions qβ in Eq. (1.18), here an integral over a spread of defocus values
∆f is performed, which leads to an additional envelope function,

Tt(q) = e− ∆2
4 [ ∂

∂∆f χ(q)]2

. (1.21)

where ∆ is the defocus (focal) spread. The aperture defined in Eq. (1.12) is typically
referred to as the semi-angle cut-off, while the spatial coherence, Ts, and temporal
coherence, Tt, are typically referred to as the angular spread and focal spread, respec-
tively. Additional blurring in the images can derive from vibrations, drifts in the stage,
magnetic lens noises etc., which are modelled to follow a Gaussian distribution that
provides the final envelope function,

TG(q) = e− σ2q2
2 , (1.22)

where σ is the 1/e amplitude of image deflections due to the mentioned noise sources.
The total image wave is finally defined as

ψim(q) = ψew(q) · T (q) · Ts(q) · Tt(q) · TG(q) (1.23)

under the quasi-coherent approximation, which allows only for small amounts of inco-
herence, and will therefore breakdown in cases with large incoherence. This models
the complete transformation from the exit wave propagating through the microscope
to the image plane.
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1.3 Modelling Detector Noise
Once the propagating electrons have interacted with the material sample and been fo-
cused through the microscope they are imaged on a detector. There are several types
of detectors that are commonly used in HR-TEM. In the modern day these primarily
include charge-coupled device (CCD) and direct detectors. The former utilises a scin-
tillator screen, based on phosphor/fibre-optics, which converts the electrons into light
that is then captured by a camera. The latter directly counts electrons by a microchan-
nel plate detector such as the monolithic active plate detector [44]. Each detector has
its own advantages and disadvantages, and the choice of detector will depend on the
specific requirements of the experiment. But regardless of the choice the presence of
noise is inevitable.

Noise in direct detectors can be approximated by shot noise [45–49], which describes
the electrons incident on the detector by a Poisson distribution, such that that the
image intensities for every real space pixel (x, y) ∈ r is

|ψim(r)|2 = Ishot
x,y = ND ±

√
ND, (1.24)

where ND is the number of electrons detected per pixel.
For scintillating material based detectors, such as the Gatan OneView [50], the ap-

proximation of pure Poissonian noise breaks down, since the spectral profile of the
noise is altered by the modulation transfer function (MTF) [51, 52]. This is an in-
trinsic property of the scintillating material describing how the energy supplied by the
electron is spread over a given area of the scintillating material, effectively spreading
the electron’s signal across multiple pixels [44, 53]. This results in a loss of spatial
resolution. A popular model of the MTF is the parametric form from Lee et al. [45],

MTF (q̃) = (1 − C) · 1
1 + ( q̃

c0
)c3

+ C, (1.25)

where the spatial frequencies are normalised by the Nyquist frequency, which is related
to the sampling, s of the detector by q̃ = q/qN = 2 · q · s. As this is a property of the
detector, which discretises the image wave, it will always be Nyquist frequency limited.
The limits of the function are 1 for q̃ → 0 due to a normalisation and C for q → ∞.
The value of C represents a noise floor, that will scale depending on the dominating
noise source [46]. This function is commonly extracted from the power spectral density
of an image of the detector (no material sample) i.e. |FT [I(r)]|2 [53]. The MTF acts
as a spatial frequency filter and is applied to the image in an identical way to the CTF
described in the previous section, namely as a product in Fourier space,

Ishot
f (q) = Ishot(q) ·MTF (q), (1.26)

where I(q) = FT [Ix,y], with FT being the Fourier transform. This is depicted in
1-Dimension in Figure 1.4.

There is a fraction of the noise that is not affected by the MTF and appears after
the scintillating material. This fraction of noise is likely from multiple sources, but
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Figure 1.4: A modulation transfer function from Eq. (1.25) with c0 = 0.2, c3 = 2.57, and
C = 0.51. The x-axis are the spatial frequencies normalised by the Nyquist frequency. The
dashed black line depicts the noise floor defined by C.

can be approximated as the readout noise [46]. The contributions of the readout noise
and shot noise can be modelled separately. The q → ∞ limit, or the C value, of the
MTF (Eq. (1.25)) will be controlled by the fractional contribution of the readout noise
to the total noise. It acts as a noise floor that can be dominated by either source at
different electron dose regimes. It is expected that at higher frame dose the readout
noise is washed out by shot noise, but at lower dose the noise source is dominated by
the readout noise [46]. The readout noise is also modelled as a Poisson distribution,
P (λ = N0), where N0 is a constant noise floor. The total noise is a sum of the two
Poisson distributions

P (λ = ND) + P (λ = N0) = P (λ = (ND +N0)) (1.27)

meaning that each pixel intensity, Ix,y in the final image is within the distribution

Ishot+readout
x,y = ND +N0 ±

√
ND +N0, (1.28)

where N0 is a constant that is intrinsic to the detector conditions, and ND is tuneable
by the user, such that it will dominate the other term when ND >> N0. A high
electron dose, however, also means that the MTF will have a stronger influence on the
spectral profile of the noise.

1.4 Exit Wave Reconstruction and Structural
Determination

The aim of an exit wave reconstruction is to reverse the effects of the microscope and
map back to the exit wave from the detected image. This involves deconvoluting the
total transfer function due to microscope imperfections, i.e.

ψrecon
ew (q) = ψim(q) · [T (q) · Ts(q) · Tt(q) · TG(q)]−1

. (1.29)
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Several methods exist to perform this deconvolution, such as the algorithm by Allen et
al. [38] and the Gerchberg-Saxton algorithm [54]. These algorithms require obtaining
a “focal series” - several images of the same sample with a varying defocus [29, 55].
The idea is to use the defocus as a varying parameter to extract phase and amplitude
information given the parameters describing the CTF, such as the Cs value [42]. Doing
so allows for an approximate reconstruction of the exit wave from the focal series
images.

The exit wave contains maximal information about the atomic structure of the ma-
terial sample. In ideal cases the optical axis is aligned along an orientation where the
material sample exhibits columns of atoms aligned along the optical axis i.e. a “zone
axis”. Each atomic column can contain varying chemical species and/or total atomic
mass. A way to interpret the exit wave of each atomic column is via channelling theory
[56]. Channelling theory, like the multislice method from Section 1.1, is another way
to described the propagation of electrons through the material. The difference is that
this theory focuses on the propagation of a single electron and describes this electron
being bound by the potential of the atomic column, allowing it to “channel” along an
atomic column. An electron channelling through an atomic column along the optical
axis is depicted in Figure 1.5(a). In this picture the material sample can be thought of
as an assembly of potential wells, one for each atomic column, that are preferably well
separated in the (x,y)-plane. The electron wave function from Eq. (1.4) can be written
as an expansion over the Eigen functions for each atomic column, and for thin samples
the primary bound state is the 1S state of the atomic column [57]. Each atomic column
in the exit wave (with a subtraction of the entry wave) can be described as

ψcolumn
ew (r, z) − 1 = 2ic1Ssin

(
−πE1S

E0

k

2
z

)
· ψ1S(r)e−iπ

E1S
E0

k
2 z, (1.30)

where c1S , ψ1S(r) and E1S are the excitation coeffecient, Eigen state and Eigen en-
ergy of the projected column, respectively, z is the depth along the optical axis, and
E0 = h2k2

/2m is the incident electron energy [42, 56–59]. The amplitude and phase of
Eq. (1.30) is

abs
(
ψcolumn

ew (r, z) − 1
)

=
∣∣∣∣2c1Ssin(−πE1S

E0

k

2
z) · ψ1S(r)

∣∣∣∣ and (1.31)

arg
(
ψcolumn

ew (r, z) − 1
)

= −π
(
E1S

E0

k

2
z − 1

2

)
, (1.32)

respectively. The highlight of this is that the amplitude peaks at the atomic column
position in r and varies periodically with the depth, z, which means the amplitude can
be used to determine the positions of the atomic columns. The phase on the other
hand is constant in the (x,y)-plane over the atomic column. The phase is also linearly
dependent with depth and E1S , which is proportional with the mass density of the
atomic column. The phase is, as a result, proportional to the atomic number of the
atoms and can be used to determine the composition of the atomic columns.

The highlighted features regarding the amplitude and phase of Eq. (1.30) is commonly
utilised by plotting the (x,y)-pixels of the exit wave covering the atomic column on
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(a) (b)

Figure 1.5: (a) An illustration of how an electron “channels” through a column of atoms.
The electrons can be thought of as “trapped” by the potential of the atomic column. These
ideal columns are sensitive to atom vibrations and tilt. The electron enters at the entry plane
of the atomic column and a conceptual exit wave is shown at the exit plane of the atomic
column. Inspired by Ref. [29]. (b) An illustration of the mass circle and defocus circle present
on an Argand plot of the atomic column exit wave, which is used to determine the structure
(constituents and positions) of each atomic column. Inspired by Ref. [31].

an Argand plot [29, 31, 42, 57–59]. See Figure 1.5(b), which presents the “mass
circle” with a radius defined by the amplitude of the atomic column and a phase, θ,
which is, as mentioned, dependent on the atomic number of the atomic column. This
provides a means to identify the atomic composition of each atomic column. The
atomic constituents and the number of atoms, i.e the heights, of the various atomic
columns will not necessarily be flat. The defocus value with respect to the exit plane
of each column will vary. The interpretation of the defocus variation across atomic
columns is treated in Refs. [29, 57]. The result is that the defocus variation can be
interpreted by the “defocus circle” shown as a dashed circle in Figure 1.5(b), which will
present the relative heights of the atomic columns’ exit plane. The Argand plot analysis
can be used to identify both the varying atomic numbers of each atomic column and
the relative position of the exit plane to determine placement of the atomic column
along the optical axis. Channelling theory is sensitive to atom vibrations and tilting of
the material sample that both deviate the situation from well-aligned atomic columns
[29]. The issue of atomic vibrations will be further explored in Chapter 5.

In summary, this chapter described the modelling of the electron microscope in TEM
mode. This includes the transformation of the incident plane wave electrons to the final
image, which involves the inclusion of the imperfections in coherence and aberrations
from the microscope, and noise due to the detector. An emphasis was placed on how
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the final image can be processed to reconstruct the exit wave by deconvolution of the
CTF. This exit wave is useful for structural determination of material samples. The
upcoming chapter will describe how deep learning can be equipped to process and
extract information from the final image.
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CHAPTER 2
Theory: Deep Learning

The electron microscope has opened a window into the atomic world, allowing users
to see atoms and their dynamic behaviour under various environmental perturbations.
The images obtained can be thought of as an array of data containing information that
has to be extracted by the user. This data extraction can be done in many ways and
this thesis is a study on what deep learning can provide to this objective.

This chapter will provide an understanding of the fundamental concepts of deep
learning models known as neural networks and what allows a neural network to detect
features in the input space and map it to an output.

2.1 Feed Forward Neural Networks
The feed forward neural network is one of the simplest, yet powerful, forms of artificial
neural networks [60]. The “neural” in neural network stems from the idea of modelling
networks to mimic the brain, which is operated by the activation of billions of inter-
connected neurons. Each neuron that is activated, activates a number of other neurons
and this chain effect defines the decision-making of any brain. A neural network’s
equivalent of the neuron can be exemplified by the perceptron [61]. Consider a neuron
that is activated by the following rule:

y(x) =

{
1, for x ≥ 0
0, for x < 0

. (2.1)

One could apply this activation to make a binary decision based on a simple condition
of the input variable x.

The fundamental idea of a neural network is to approximate a function f that maps
an input x to an output y, where the mapping will typically exceed the complexity of
a step function shown in Eq. (2.1). In the case where the true mapping y = f(x) is
not known, the neural networks approximate mapping can be defined as ỹ = f̃(x).

An example of a feed forward neural network is shown in Figure 2.1 for an arbitrary
input vector with 3 elements that should be mapped to an arbitrary output of 2 el-
ements. It is shown that the mapping is achieved by a given set of weights applied
at each neuron in a so-called “hidden” layer, which consist of multiple neurons. The
hidden layer transforms the input data based on the weights at every neuron to map it
to the desired output. A feed forward neural network is constructed in layers, in this
case: An input layer, a hidden layer, and an output layer.
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Figure 2.1: An illustration of a single hidden layer feed forward neural network. At each
neuron in the hidden and output layer, a weight is applied to transform the output. These
weights map a given input to a desired output.

In a fully-connected network every point in the input layer is connected to every
neuron in a hidden layer, every neuron in that hidden layer is connected to every
neuron in the next hidden layer, and finally every neuron in the last hidden layer is
connected to every point in the output layer. The output of each neuron affects many
others and the connections are only in the forward direction (input to output), hence
the given name - “feed forward”.

The output of a neuron in the hidden layer, zj , for an input vector, x, and weights
vector, w, is given by

zlinear
j (x,w) =

N∑
i=1

xiwi + b0, (2.2)

where N denotes the number of points in the input layer, w is a tuneable weight for
each connection from a point in the input layer to a neuron in the hidden layer, and b0
is a tuneable bias associated with the layer. The issue at this stage is that the mapping
in Eq. (2.2) is only linear, which will limit the applications to only linear solutions. To
introduce non-linearity this output is passed through an activation function, fA as

znon−linear
j (x,w) = fA

(
N∑

i=1
xiwi + b0

)
. (2.3)

The first example of an activation function was the perceptron activation in Eq. (2.1),
and more commonly applied activation functions will be presented in Section 2.3. Sim-
ilar to the principle of the brain, it is the activations of the neurons that will effectively
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map the input to the output, and the activation will be controlled by the weights,
biases, and the activation function.

The reason these models are referred to as networks is because there are typically
multiple hidden layers where the resulting mapping function is represented by a compo-
sition of the functions of each layer [60]. Neglecting the weights and number of neurons,
a simple representation of this composite function is

f̃(x) = f (H)( ... f (3)(f (2)(f (1)(x)))), (2.4)

where the number of hidden layers, H, defines the “depth” of the network. For many
tasks a large depth has proven to be crucial, which is why this field is referred to as
“Deep” learning [60].

2.2 Loss Functions and Back Propagation
In supervised learning (as opposed to unsupervised learning, which is beyond the scope
of this thesis) [4], every input x has a paired label y i.e. the data set, D, is defined as

D = {(xi, yi)|i = 1, ..., N} (2.5)

for N data examples. After the forward passing of an input xi through the neural
network, an approximate ỹi is inferred by the network and this can be compared to
the label or ground truth yi by means of an error function or loss function, L(y, ỹ).

A common loss function for regression tasks is the mean squared error averaged over
the data set defined as

LMSE(y, ỹ) = 1
N

N∑
i

||yi − ỹi||2, (2.6)

which is most suitable when the neural network should take an input and output a
value that is not categorised into discrete classes [62]. On the contrary, in classification
problems y and ỹ represent probabilities for each data point belonging to a given
category or class, hence the cross entropy is introduced as a measure of the difference
between the true and predicted distribution. The cross-entropy loss, also known as log
loss, is used as a measure of how well the neural networks predictions match the true
values. It measures the dissimilarity between the predicted probability distribution,
which is obtained from the output of the neural network, and the true distribution.
The categorical cross entropy loss is defined as

LCCE(y, ỹ) = − 1
N

N∑
i

C∑
j

yi,j · log(ỹi,j), (2.7)

which presents a sum over categories or classes, C [63]. It can be seen that for a
given data example and class, the loss function is defined by −log(ỹ) which is 0 if
the predicted probability is correct i.e. ỹ = 1, and increases with decreasing ỹ. This
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function is calculated for each example in the data set and then averaged over the
entire data set. In the case where C=2, this simplifies to the binary cross entropy loss,

LBCE(y, ỹ) = 1
N

N∑
i

−(yi · log(ỹi) + (1 − yi) · log(1 − ỹi)), (2.8)

where yi, can be interpreted as the probability that the output belongs to class 1,
rendering 1 − yi the probability that the output belongs to the class 0 [64].

As mentioned, the neural network is attempting to learn the mapping between x
and y, defined as f(x,θ), where θ contains all the tuneable parameters of the model
i.e. θ = (W(1),W(2), ...), where W is a matrix for each hidden layer containing the
vector weights for each neuron. To do so the neural network must minimise the chosen
loss function and identify the optimal parameters associated with this minimum. Since
the loss function is typically not linear or parabolic, evaluating the minimum of the
derivative is not trivial [65]. To solve this the gradient descent method is utilised,
which iteratively updates the parameters towards the minimum of the loss function
[66]. This involves computing the partial derivatives of the loss function with respect
to all the parameters and updating them by

θi+1 = θi − η
∂L
∂θ

, (2.9)

where η is known as the “learning rate”, which controls the magnitude of the change
in response to the gradient, and i denotes the update iteration [67].

Many gradient descent algorithms exist such as the Root Mean Square Propagation
(RMSprop) and Adaptive Moment Estimation (ADAM) algorithm that differ in their
approach to applying the gradient to update each step [68]. These algorithms are
referred to as “optimisers” and selecting an optimiser along with a learning rate is a
part of identifying the best possible training procedure for the neural network i.e. one
that minimises the loss function and converges within a sensible number of iterations.

The entire process of computing the gradients and updating the weights is referred
to as the “back propagation”, which will always succeed a feed forward step. Training
neural networks, like other machine learning algorithms, is a cyclic process of repeated
feed forward and back propagation steps, until the loss function converges, or a user
defined maximum number of cycles is reached. These cycles are referred to as “training
epochs”.

2.3 Activation Functions
The role of the activation function is to add non-linearity to the activations of the
neurons. There are many activation functions to choose from and the choice is often
an experimental science and a large part of the optimisation process. In fact, neural
networks will typically utilise different activation functions at different layers. The
reasons to choose one over the other is problem specific and at this point in time
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many have become standard for certain types of problem. This section will present the
relevant activation functions for the work and provide some of the general advantages
and disadvantages [69]. These activation functions are presented in Figure 2.2.

Figure 2.2: Common activation functions that add non-linearity to the output of each neuron
in a neural network.

Sigmoid/Logistic
The sigmoid activation function is defined as

fA(z) = 1
1 + e−z

. (2.10)

The advantages of using this activation function include:

– The output of the sigmoid function is always between 0 and 1, which makes it a
good choice for binary classification problems, since the output can be interpreted
as a probability.

– The sigmoid function is fully differentiable, which allows the use of a gradient
descent optimisation algorithm in the back propagation described in the previous
section.

The disadvantages of using this activation function include:

– The sigmoid function can cause the “vanishing gradients problem” [70] when the
input values are very large or small. This is due to the values saturating to 0 or 1
in the lower and upper limits, causing the gradient to go to 0 very quickly. This
can make it difficult for the neural network to learn.

Softmax
Consider the sigmoid function in a multi-class classification problem. It will produce

a value between 0-1 for each class, however nothing ensures that the sum of the output
values over all classes gives 1. The softmax activation function is defined to provide a
probability of each class that sums to 1. The softmax activation function is defined as

fA(zi) = ezi∑
j e

zj
, (2.11)
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which is in fact a combination of multiple sigmoids.
The advantages of using this activation function include:

– The softmax function normalises the output of the network to a probability dis-
tribution, which makes it a good choice for multi-class classification problems.

– The softmax function is fully differentiable, which allows the use of a gradient
descent optimisation algorithm in the back propagation described in the previous
section.

The disadvantages of using this activation function include:

– Similar to the sigmoid, the softmax function can cause the vanishing gradients
problem.

– The softmax function can be computationally expensive when the number of
classes is very large.

Rectified Linear Unit
The Rectified Linear Unit (ReLU) activation function is defined as

fA(z) = max(0, z). (2.12)

The function maps any input value x to either z if z is positive, or 0 if z is negative.
The advantages of using this activation function include:

– The ReLU function is computationally efficient because it only requires a simple
comparison and a subsequent multiplication by a scalar value.

– The ReLU function is non-saturating, which means that the gradient does not
saturate as the input grows large.

The disadvantages of using this activation function include:

– The ReLU function is not defined for negative values, which means that the gra-
dient is 0 for negative input values. This can cause the so-called “dead neurons”
problem [71, 72], where certain neurons in the network never activate and never
update their weights during training.

– The ReLU function is not differentiable at z = 0, which can cause some issues
with gradient-based optimisation algorithms [72].

Due to the computational efficiency of the ReLU, it is very desirable to utilise it in
deep neural networks, with many neurons. As an improvement to the original ReLU,
the leaky ReLU was introduced to reduce the dead neurons problem by introducing a
slope in the negative region of the function. Succeeding this modification, the slope
was made tuneable in the parametric ReLU (PRelu), which is defined as

fA(z) = max(az, z), (2.13)

where a is now a tuneable parameter, allowing an optimal slope or optimal gradient to
be trained.
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2.4 Convolutional Neural Networks
Consider the feed forward neural network presented in Figure 2.1 where the input data
is an image, flattened so that it is a 1-Dimensional vector rather than a 2-Dimensional
matrix. For an image of 512 x 512 pixels, this results in a vector of 262,144 input
points. Now define a hidden layer with 1000 neurons and the number of weights
becomes 262,144,000, which is a tremendous amount. Image dimensions can easily be
larger and so can the number of neurons, making fully-connected feed forward neural
networks very impractical for images or other arrays of large sizes.

Convolutional neural networks approach this problem by combining the activation
of a set of data points into a single value in the succeeding layer. As hinted at by the
name, the method of combining the data points or (in the context of images) pixels
is by a convolution. Defining a kernel, K, that has kx x ky dimensions, a convolution
between the kernel and the image is performed. For an image, I, with pixels, (i,j), this
is defined as

Si,j = (I ∗K)i,j =
∑
m

∑
n

Ii+m,j+nKm,n, (2.14)

where the output, S, is commonly referred to as a feature map. An illustration of
performing a convolution with a kernel on an input image is presented in Figure 2.3(a),
where it is shown that a 3 x 3 region in the input image is reduce to a single value that
is passed through an activation function, forming a single pixel in a feature map. The
feature map has a reduced dimension compared to the input image, so the input image
is typically padded (values are added around the border to increase its dimensions) by
various methods [73].

(a) (b)

Figure 2.3: (a) Illustration of the convolution between a kernel and a local region of the
image. The kernel scans across the image in strides of 1 and produces a feature map. (b)
Illustration of dilating the kernel. Using the same input image as in (a), the weights of the
kernel are spread across a large spatial region, with a dilation value of 1.
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The kernel is a primary component in defining the performance of convolution neural
networks. The kernel has three key features: sparse interactions, parameter sharing,
and translational equivariance [74].

The kernel dimensions are typically defined to be significantly smaller than the input
image dimension. The convolution is therefore performed between the kernel and a
local region of the image. The kernel is translated along the image space in strides,
where a convolution is performed after every stride. The connectivity between a pixel
in the input space and a pixel in the feature map is said to be sparse, since the pixel
in the input space does not contribute to every pixel in the output, but only to a local
region of pixels in the output space.

The kernel contains the trainable weights of the model and these weights are reused at
multiple, possibly every, point in the input space. This idea is referred to as parameter
sharing; Each weight is tuned by multiple points in the input space. This proves to be
very useful for images that typically contain features, which exist within smaller local
regions of the image and can exist at various spatial regions in the image.

The output is also equivariant under translations, since the translation of a feature
in the input space will produce the same translation in the output space. Consider
for example a kernel that detects an edge (a boundary between high and low contrast
in an image). This kernel would generate a feature map that highlights all the edges
present in the image. Translating the image pixels, would translate the feature map
pixels corresponding to the edges. This is an efficient use of the trainable weights.

The kernels are tuned by defining the dimensions, the stride length, and a dilation
parameter. Dilation involves enlarging the dimensions of the kernel by adding zeros
between the trainable weights and as a result spreading the weights across a larger
spatial region. This concept is illustrated in Figure 2.3(b), and presents a way for
the kernel to detect features in the input space that exist across larger areas without
increasing the number of trainable weights in the kernel.

2.5 A Practical Note on Deep Learning
In practice, constructing and training neural networks is very much an experimental
science with many technical details one will experience along the way. What activation
function and what kernel size and dilation, for example, are a few of many parameters
that will have to be optimised for each problem by what is referred to as “hyperparam-
eter tuning”.

A single convolutional layer in a neural network consists of the convolution and an
activation for each kernel. Multiple kernels can be applied within a convolutional layer,
each producing different feature maps, which is typically referred to as the output chan-
nels or “filters” of a convolutional layer. Each feature map extracts a certain feature
from the input image, which is passed on to succeeding layers to build upon those
features. Most convolutional neural networks consist of many successive convolutional
layers, each generating many features maps, which are combined in various ways to
transfer information in the feed forward direction of the neural network. Other layer
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types exist that perform pooling operations to down-sample the feature maps or in-
terpolation operations to up-sample feature maps, as well as combine feature maps by
element-wise addition or concatenations, referred to as “skip-connections”. The way
these many layers are constructed and connected is referred to as the “architecture”
of the neural network, and at this point of time there are many existing architectures.
Some architectures will be introduced later, in Section 3.3.

Once a neural network is constructed it must be trained on a data set. The goal
of many machine learning methods is to train a model that provides reliable enough
inferences to predict information outside of the given data set. To gauge the ability
of the model, or neural network, to generalise, the data set is commonly split into a
“training”, “validation”, and “test” data set. For an illustration of data splitting see
Figure 2.4. Typically most of the data is contained in the training data set, which is
the portion of the data that contributes to the feed forward and back propagation steps,
or training epochs, described in Section 2.2. At the end of every training epoch, the
loss function is computed for the training data set, as well as the validation data set,
to ensure that the updated weights of the neural network do not only map the training
data set space but are applicable outside. Cases where the neural network converges
the loss function for the training data set but not the validation data set is referred to as
“overfitting”, which results in an unreliable neural network that only maps the training
data space. When a neural network has, after several training epochs, converged the
loss function for both the training and validation data set, this neural network can be
applied to the test data set as a final sanity check to ensure generalisability (More on
this in Chapter 3).

Neural networks are computationally heavy, and in many cases it is not possible to
load the entire data set, along with the neural network on the computer memory. The
data set, D, is typically divided into batches of size B such that

DB = {(xi, yi)|i = 1, ..., B}. (2.15)

In practice the loss function and gradients of a given batch is computed, instead of
the entire data set, and is used as an approximate gradient to the entire space. This
is referred to as mini-batching and has proven to much more computationally efficient
and a good approximate to minimising the entire data set space [67].

After being exposed to a training data set for a sufficient number of training epochs,
the neural network’s many neuron activations can map an input image to some other
output image, or classify pixels belonging to a given class, which is known as segmenta-
tion. This highlights the motivation to apply convolutional neural networks as a tool
to processing HR-TEM images.
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Figure 2.4: An illustration of the training procedures for a simple convolutional neural
network architecture. Each convolutional layer can apply any number of convolutional kernels
to generate multiple feature maps. This figure depicts how the data set is split into a training
portion and validation portion. The training portion contributes to the feed forward and
back propagation stages of neural network training, and after each training epoch the loss
function is computed for both the training and validation data set, where the training loss is
used for back propagation i.e. updating the neural network weights. The loss function should
converge to a minimum for both portions of the data set to ensure that the neural network
can generalise to data outside the training data set. The final test data set is neglected here.



CHAPTER 3
Software: Neural Network
Assisted HR-TEM Pipeline

A software pipeline1 has been implemented to facilitate data generation, neural network
training, and analysis tools that utilise trained neural networks for various tasks in HR-
TEM. The pipeline is summarised in Figure 3.1, where (from top to bottom) the first
step is data generation.

Data generation involves the preparation of hundreds to thousands of diverse atomic
systems. These atomic systems are constructed in the Atomic Simulation Environment
(ASE) [75]. A HR-TEM image of each system is simulated with a varying degree of the
microscope imperfections and noise described in Chapter 1. The image simulations are
executed using abTEM (transmission electron microscopy from first-principles) [76] -
an image simulation software based on the multislice method presented in Section 1.1.
The software pipeline provides an abundance of simulated HR-TEM images for training
neural networks. Each HR-TEM image has a paired output referred to as the “ground
truth” or “label”. Atomic positions from the simulated atomic systems are utilised
to generate accurate labels, beyond the accuracy of manually segmented experimental
data [77]. The neural network will map the HR-TEM image (input) to the label
(output) and so labels are generated for various purposes, involving both segmentation
(pixel-wise classification) and regression tasks.

In the next step, neural networks are constructed using TensorFlow+Keras [78],
which provides an application programming interface (API) to set up the input, output
and convolutional layers, as well as set up activation functions for each layer, define the
loss function, and more, all introduced in Chapter 2. Training scripts are developed for
numerous neural network architectures and are automated to flag a loss function and
final output layer associated with the labels provided (see Section 2.2 and Section 2.3).

Last but not least, tools have been implemented to apply the neural networks to both
simulated and experimental data in order to extract information from the HR-TEM
images. These tools include gauging the performance of the trained neural networks
by various metrics and handling of experimental HR-TEM images with the associated
metadata. The tools further include methods to apply neural networks to both simulate
and experimental HR-TEM images and to utilise neural network segmentations to
extract information such as the area, position, orientation and the chemical composition

1For sake of clarity, “in software engineering, a pipeline consists of a chain of processing elements
(processes, threads, coroutines, functions, etc.), arranged so that the output of each element is the
input of the next” - From Wikipedia, the free encyclopedia.
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Figure 3.1: A diagram of the software pipeline implemented as a central part of this thesis.
The pipeline allows for numerous diverse atomic systems to be constructed and imaged with
varying microscope conditions. The atomic systems allow for accurate labels (ground truths)
to be computed and paired with each HR-TEM image associated to a given atomic structure.
The paired images and labels allow for supervised training of multiple neural network archi-
tectures for a number of given tasks, including both segmentation and regression tasks. The
final segment of the pipeline involves tools implemented to utilise the trained neural networks
for data extraction.
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in a consistent and large-scale manner to achieve statistically significant information.
The following sections will delve into the specific technical aspects of each part of

the pipeline. Section 3.1 will provide a detailed description of how atomic models
are constructed in order to expose the neural networks to large variations of atomic
systems, whilst still being realistic in order to match experimental data. Section 3.2 will
leverage the concepts and theory from Chapter 1 to simulate HR-TEM images. The
application of the CTF and MTF described in Sections 1.2 and 1.3 will be controlled
via an input file, which will be a central part of the entire pipeline. In Section 3.5
and Section 3.4 a presentation will be made of several Python objects implemented to
handle HR-TEM data files and to apply the neural networks. The focus is to open the
door to large-scale analysis with neural networks. An emphasis will be placed on how
the Python objects improve accessibility to handling HR-TEM images and to utilising
the neural networks to a user with limited programming experience. The pipeline in
Figure 3.1 presents a graphical user interface (GUI) part under the analysis segment,
which is handled later in Chapter 6.

The entire software pipeline is available as a GitLab repository for open access use and
development under the MIT license2. This software pipeline is prepared for high per-
formance computing (HPC) clusters and is therefore designed to be accessible through
a Unix terminal, whilst the analysis tools are designed for use in Jupyter notebooks.

3.1 Atomic Modelling
For the majority of this work two classes of atomic systems were considered: face
centred cubic (FCC) crystals, and monolayer 2D materials. More specifically, Au (FCC)
nanoparticles and MoS2 monolayer nanoflakes have been extensively studied, due to
the experimental data sets provided for this thesis. In this section the considerations
behind the construction of these atomic systems are described. To train robust neural
networks that are applicable with minimal bias it is important to expose the neural
network to as many atomic systems as possible, which is feasible through simulations.

The software pipeline supplies Python scripts that are executable with command-line
arguments. The purpose of these scripts is to generate a data set of diverse atomic
systems and exit waves through ASE and abTEM. The atomic systems and exit waves
generated are stored in a folder as they will be the input to the next component of
the pipeline - the generation of images and labels (Section 3.2). The output of these
scripts are summarised in Table 3.1.

For every atomic system, information of the atomic columns are stored, such as its
position in space and categorical class. Atoms that are displaced along the optical
(z-)axis but fall within a certain small distance in the (x,y)-plane (e.g. a radius of
0.3 Å - this value should be well below the lattice constant of the atomic system, but
large enough to allow for minor perturbations in the atomic positions), are clustered
into an atomic column positioned at the centre-of-mass of all the atoms belonging to
that column. This is referred to as a “site”, seen in Table 3.1. An example of such a

2Code availability: https://gitlab.com/matthewhelmi/NeuralNetwork_HRTEM.
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Table 3.1: Output from atomic modelling Python scripts.

Models format: .cfg or .traj
Stores the atomic system, with information of the atomic ele-
ments.

Waves format: .h5 (HDF5)
Stores the exit wavefunction as an abTEM Wave object.

Points format: .npz (Python dictionary)
Stores the (x,y) coordinates of atomic columns under “sites”
and their categorised class under “classes”.

column is shown in Figure 1.5(a). This could be a column of Au atoms along the [110]
zone axis of a Au nanoparticle, or a 2S column in monolayer MoS2 (2H phase). Each
atomic site can be classified for either binary or multi-class segmentation (e.g. 1Mo,
2S, 1S sites), which is stored as “classes” in Table 3.1.

For each atomic structure an exit wave is computed via the following code snippet,
which is a direct application of the multislice algorithm described in Section 1.1 with
parameterised potentials from Kirkland [79]:

from abtem.potentials import Potential
from abtem.waves import PlaneWave

# A potential is defined for a given atomic system , using a
# parametrisation such as the Kirkland parametrised potentials
potential = Potential(atoms , ...)
# Set up a plane wave with a given energy (acceleration voltage)
wave = PlaneWave(energy)
# Apply the multislice algorithm to generate the exit wave
exitwave = wave.multislice(potential)

This concludes the general concepts behind all of the atomic modelling in the software
pipeline and the following will provide more specific details behind the two aforemen-
tioned classes of materials, starting with Au (FCC) nanoparticles.

Oxide Supported FCC Nanoparticles
Oxide supported FCC metallic nanoparticles are studied at large for catalytic pur-

poses [80–82]. Often there is a need to gather statistics on morphological properties
such as the orientation and size of the nanoparticles, or to identify the mobility of
atoms/atomic columns under different conditions to gain a better understanding of
the catalytic properties [14, 83–85].

FCC nanoparticles, for a given chemical species, can be generated by specifying the
(h,k,l) miller indices of the desired layers and the number of planes for each layer,
which will construct a pristine FCC crystal. Here is an example of constructing a Au
nanoparticle with 7, 8 and 9, (100), (110) and (111) planes, respectively:
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from ase.cluster.cubic import FaceCenteredCubic

surfaces = [(1, 0, 0), (1, 1, 0), (1, 1, 1)] # Miller indices
layers = [7, 8, 9] # Number of layers
nanoparticle = FaceCenteredCubic(’Au’, surfaces , layers)

The software pipeline generates FCC nanoparticles where the size of a nanoparticle
is controlled by varying the number of (100), (110), and (111) planes that make up the
nanoparticle. Between 7 and 15 number of planes for each layer constructs realistic
sizes of nanoparticles [86]. Each nanoparticle is rotated so that the [110] crystal zone
axis is aligned with the optical (z-)axis (see Figure 1.1). A slight random tilt off zone
axis between 0 and a maximum value provided by the user (see Listing 3.3) is applied
since it is not certain that the nanoparticle’s zone axis will always be perfectly aligned
with the optical axis. At a random layer from the centre of the nanoparticle a slice
is made perpendicular to the [111] direction, effectively exposing a cross section of a
(111) facet, which is the expected interface to a supporting oxide material [86].

The oxide support (in this case CeO2) is generated by first constructing the unit cell.
This unit cell is then used to build a slab for a given facet, in this case the (111) surface
using the lattice parameters from the Materials Project [87, 88]. Here is an example:

from ase.build import bulk , surface

ceria = bulk(’CeO2’, crystalstructure=’fluorite ’,
a=5.47, b=5.47, c=5.47, alpha =90) # unit cell

slab = surface(ceria , indices =(1,1,1), layers = 20, vacuum = 0)
rep = 20
slab *= (rep ,rep ,1) # (x,y) repetitions

The repetitions are set to fill a large area. The exposed (111) facet of the FCC nanopar-
ticle is attached to the (111) plane of a CeO2 slab, whose [110] zone axis is also aligned
with the optical (z-)axis.

The CeO2 supported Au systems are randomly rotated about the optical (z-)axis,
so that the support and interface will not always be located at the same region of the
HR-TEM image. An example is shown in Figure 3.2 along with the degrees of freedom
at which the structures are randomised. The random degrees of freedom includes:

– The size of the nanoparticle.
– The Z thickness of the cell, effectively altering the thickness of the CeO2 support.
– The zone axis tilt, tilting the [110] zone axis slightly off the optical (z-)axis.
– The nanoparticle (NP) placement in the y-direction along the surface of the CeO2

support.
– A rotation between 0◦ and 360◦ about the optical (z-)axis.
– The placement of the atomic system along the x-axis.

All atoms that may appear outside the simulation cell due to the numerous transla-
tions, rotations, and sizing, are removed with at least 2 Å vacuum to every edge to avoid
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Figure 3.2: Visualising the degrees of freedom for generating numerous CeO2 supported
FCC nanoparticles. This is a CeO2 supported Au nanoparticle in a simulation box of 60 x 60
x 60 Å. The nanoparticle can be rotated about the x-axis to shift the [110] zone axis slightly
off axis and the entire system is rotated about the optical (z-)axis. The nanoparticle is also
translated along the y-axis to situate it differently along the CeO2 support, and the CeO2
support thickness is varied by varying the cell thickness in the z-direction.

periodic boundary effects in abTEM. The interface spacing between the nanoparticle
and surface is set to 1 Å. Any interactions in the potential at or near the interface is
not treated by abTEM. The CeO2 supported Au systems are simulated with a constant
beam energy of 300 keV.

The pipeline provides a Python script that takes in minimal user input and executes
the construction steps described above to generate realistic CeO2 supported nanopar-
ticles, shown in Listing 3.3. The mandatory arguments include: the name of the folder
to store the items listed in Table 3.1, the chemical species of the nanoparticle, the
maximum off zone axis tilt of the nanoparticle, and the number of desired systems.

$ python make_fcc_cluster_supported.py [Folder name] [Chemical Species]
[Maximum zone axis tilt] [Number of systems]
Optional: --sampling [Sampling in Å/pixel of the exit wave]
Optional: --resolution [Number of x, y pixels of the exit wave]
Optional: -s/--start [Starting number]
Optional: -n/--numproc [Number of cores for parallelisation]
Optional: --seed [Seed random number generator reproducibility]
Optional: --train [Store as training data set (Default )]
Optional: --test [Store as validation/test data set]

Listing 3.3: An instruction on the Unix command-line usage of the Python script for gener-
ating numerous CeO2 supported metallic nanoparticles with varying sizes.

2D Monolayer Nanoflakes
2D materials such as MoS2 are studied and applied in industry for sulphur extraction

from crude oil and gas sensing amongst other applications [1, 89]. Effects on the mate-
rial sample induced by the electron beam are increasingly important in 2D materials
due to the reduced dimensionality, which also supplies an increased density of cataly-
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Figure 3.3: MoS2 nanoflakes are generated by selecting random atoms from a larger sheet
and computing the convex hull of these atoms to define a boundary between which atoms to
keep and which to discard. S vacancies, or 1S atomic columns, are generated by removing
random S atoms, and holes can be generated by removing entire 2S or 1Mo atomic columns
at random.

tically active sites [90]. The pipeline supplies Python scripts to simulate 2D material
structures with defects. More specifically this work tackles monolayer MoS2 in the 2H
phase in order to study the abilities of neural networks to differentiate between 1Mo,
2S, and 1S atomic columns - otherwise known as vacancy defects, which are common
defects occurring due to the electron beam [90–92].

Here is an example of defining a MoS2 unit cell:

from ase.build import mx2

MoS2 = mx2(formula=’MoS2’)

The unit cell is then repeated to fill a given cell size forming a large sheet of MoS2.
Atoms are selected at random within the sheet and the convex hull of those atoms is
used to cut out a randomly shaped nanoflake, which is visualised in Figure 3.3. The
randomly shaped cut-outs will avoid the neural network from biasing specific shapes of
the nanoflakes and specific edge terminations [93]. Within the nanoflake, S vacancies,
or 1S atomic columns, are created by removing randomly selected S atoms. The same
can be done to create holes (empty atomic columns) by removing entire 2S or 1Mo
columns. Similar rotations and translations as presented in Figure 3.2 for the Au
nanoparticles are applied to the MoS2 nanoflakes to introduce more diversity in the
spatial placing and orientation in the (x,y)-plane.

Listing 3.5 presents a Python script for generating numerous monolayer MoS2 nano-
flakes, where the only required input is the folder name to place the outputs summarised
in Table 3.1 and the number of systems. The code currently applies a default beam
energy of 50 keV, but another value can be supplied by the user. The user can also
apply perturbations to the atomic positions by a Gaussian defined by the distort
value in unit Å, and even a Debye-Waller smearing of the atomic potential, which will
be described later in Chapter 5.
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$ python make_MoS2.py [Folder name] [Number of systems]
Optional: --beamenergy [Energy of the electron beam in eV]
Optional: --debyewaller [Gaussian smearing of the potential in Å]
Optional: --distort [Gaussian perturbation of atomic positions in Å]
Optional: --sampling [Sampling of the exit wave in Å/pixel]
Optional: --arraysize [Number of x, y pixels of the exit wave]
Optional: -s/--start [Starting number (Default: 0)]
Optional: -n/--numproc [Number of cores for parallelisation]
Optional: --seed [Seed random number generator reproducibility]
Optional: --train [Store as training data set (Default )]
Optional: --test [Store as validation/test data set]

Listing 3.5: An instruction on the Unix command-line usage of the Python script for gener-
ating numerous monolayer MoS2 nanoflakes with varying shapes and defects.

3.2 Image and Label Generation
The previous section presented how thousands of randomly configured atomic systems
are generated. For each atomic system an exit wave is computed via the multislice simu-
lation method which is the most computationally expensive part of the data generation
segment of the pipeline. From each exit wave a HR-TEM image can be computed by
applying a CTF, optional noise along with an optional MTF, and other microscope
imperfections from Chapter 1. All of these factors are collectively referred to as the
“microscope parameters” and are all set by the user. Applying the microscope imper-
fections to the image is a relatively cheap operation, which facilitates the generation
of multiple images from each exit wave with different microscope parameters. This
concept is referred to as an “image epoch”. As shown in Figure 3.4, with 3 image
epochs, each exit wave produces 3 images that project the same atomic system with
different microscope parameters.

Figure 3.4: Illustration of “image epochs”, which are cycles (in this case 3 cycles) of images
of the same atomic system (i.e. generated from the same exit wave) with varying degrees of
microscope imperfections from Chapter 1. This includes the CTF, electron dose, MTF etc.,
which are collectively referred to as the “microscope parameters”. This illustration shows the
same atomic system projected under varying degrees of noise, contrast, and blur, which can
promote the ability of a neural network to be robust to these variations - more in Section 3.3.
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There are a multitude of choices to be made by the user to ensure that the images and
labels are sensible. The choices include the range of each microscope parameter, the
type of label that should be paired with the image, the number of image epochs, and
more. These choices are defined and passed into the pipeline via an input file, which
will be referred to as the ”parameters file”. The choices of parameters are presented
in Table 3.2. These parameters are handled as a Python dictionary and stored as
a json file for reproducibility and book-keeping. This is a key element to allow the
user to control the automation of the remaining parts of the pipeline. The user can for
example choose to simulate images matching experimental images obtained with either
a direct electron detector or with a CCD and scintillator based detector, as described
in Section 1.3. The user can generate datasets with various MTF and CTF parameter
ranges, varying number of image epochs, and more. All of the microscope parameters
should be defined as a range e.g. (L, U), where L and U is the lower and upper bound,
respectively. See a full example of a parameters file in Listing A.1. A seed value is also
definable to allow the user to reproduce exact copies of datasets, by seeding random
generators that define the various parameters for each image from the given ranges.

Table 3.2: Input parameters that should be defined by the user. This
file defines the ranges of the microscope parameters and will control the
automation of the remaining pipeline by initialising the neural network
training parameters accordingly.

Label Type: string | Options: Mask, Disk, Exitwave
Selects the label to be created. Selecting Mask or Disk will
generate binary images that segment the entire atomic struc-
ture (see Figure 3.5), or individual atomic columns (see Fig-
ure 3.6), respectively. Selecting Exitwave will store the real
and imaginary part of the exit wave of the system (see Fig-
ure 3.7).

Image epochs Type: int
Number of images (at different microscope parameters) per
exit wave/atomic system. Only applies to training data. It
will be forced to 1 for validation/test data. See Figure 3.4.

Image size Type: int tuple
Number of pixels in (x, y). This will crop or zero pad the
exit wave if necessary.

Noise Type: string or None | Options: poisson
The stochastic noise model to apply for shot noise. Can be
None for no noise. See Eq. (1.24).

MTF Type: string or None | Options: parametric
Apply an MTF. See Eq. (1.25).

Number of classes Type: int
The number of classes. Effectively the number of output chan-
nels i.e. Output shape = Nx x Ny x Nchannels. For the exit
wave this must be 2 to store the real and imaginary part.

Continued on next page
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Table 3.2 – continued from previous page
Null class Type: bool

Whether or not to include a background class. This channel
is the sum of all other channels and inverted.

Spot size Type: float
Width of the circular discs used to segment atomic columns
in unit Å. See option “label: ’Disk’ ”.

Multifocus Type: float tuple or None
tuple(Number of images in focal series, defocus step in Å,
uncertainty of defocus step in Å) - e.g. tuple(3, 50, 1) will
generate a focal series of 3 images with (50 ± 1) Å in between.

Normalisation Distance Type: float
Gaussian width in Å for image standardisation. See Sec-
tion 3.3.

Debug Type: int
Number of images and labels to save into a debug folder for
verification.

Seed Type: int
Seed for reproducing microscope parameters below.
Microscope Parameters

All parameters below are type float tuple to specify the lower and upper bound.
Sampling Sampling range in unit Å/pixel. This should match experi-

mental data.
Dose Range of electron dose in e−/Å on a log scale. See Eq. (1.28).
Blur Range for Gaussian width of blur in Å. See Section 1.2.
Focal spread Range of focal spread in Å. See Section 1.2.
Defocus Defocus range in Å. See Section 1.2.
CTF Range for c30, c12, c21, c23, c32, c34, c45 individually. See

Section 1.2.
MTF Range for c1 ≡ C, c2 ≡ c0, c3 ≡ c3 individually. See

Eq. (1.25).
Readout Range for N0. See Eq. (1.28).
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The pipeline supplies a Python script for generating a great number of images and
paired labels. Only two inputs are necessary from the user. These inputs include the
parameters file, which is passed as an argument along with the path to the atomic sys-
tems generated prior to this i.e. the path where Table 3.1 is stored. This is documented
in Listing 3.6.

$ python make_image_data.py [Folder with atomic models+waves+points]
[Input parameters]
Optional: --train # Training data?
Optional: --test # Validation/test data?
Optional: -n/--numproc [Number of cores for parallelisation]
Optional: --seed [seed value for reproducibility]

Listing 3.6: An instruction on the Unix command-line usage of the Python script for gener-
ating images and labels.

Notice that Listings 3.3, 3.5 and 3.6 all provide options to select between training
and validation/test data. Referring back to Section 2.5, the user will be training neural
networks with a training data set, but will need to verify the neural network’s gener-
alisability on separate data sets. At the very least the user must generate a training
data set and validation data set to verify the neural network training, but numerous
test data sets can be generated with different ranges of microscope parameters to test
the neural network on varying conditions post-training.

Section 2.2 introduced the idea of supervised learning. In short, supervised learning
involves training the neural network to map the input to the paired label (output). This
means that the label will define the task for the neural network, which for this thesis
consists of multiple segmentation tasks and the exit wave reconstruction, which is a re-
gression task. Three types of labels have been the focus of this work: Mask, Disk, and
Exitwave labels, each of which will be defined and described, starting with Mask labels.

Mask Labels

Description: A binary label that separates pixels belonging to a spatial region of inter-
est of the input image (Binary segmentation).

An example of this type of label is shown in Figure 3.5. During the atomic modelling
and exit wave simulation stage explained in Section 3.1, sites are stored containing the
positions of the atomic columns. The convex hull of these sites are used to generate an
outlining mask of the atomic system. This binary mask will have the same resolution
and size as the image and effectively assigns each pixel to either a class belonging to
the atomic system of interest or a background class.

These labels are useful for identifying regions of interest in large samples consisting
of many nanoparticles. The regions of interest are masked with pixel-wise resolution,
which is a probability map of each pixel belonging to either one of the classes. From
the masked region the user can utilise the mask to extract morphological properties,
such as the size of the nanoparticle, and to crop spatial regions and compute Fourier
transforms to identify crystallographic properties and orientation [14].
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Figure 3.5: Example of a Mask label for a CeO2 supported Au nanoparticle. Top: Presents
the simulate HR-TEM image for a CeO2 supported Au nanoparticle, with an image size of 512
x 512 pixels. Bottom: Presents the convex hull of the stored sites (atomic column positions)
being used to generate an outlining mask. The binary mask has the same resolution and size
as the image above and separates the pixels belonging to the Au nanoparticle from the rest
of the image by assigning each pixel to a class.
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Disk Labels

Description: Binary labels that separate pixels belonging to various atomic columns for
a given atomic system. The label separates the atomic columns by one-hot encoding
of multiple classes (Multi-class segmentation).

In MoS2 multiple classes of atomic columns exist, namely 1Mo, 2S, and 1S atomic
columns, which is presented in Figure 3.6. The atomic sites that were stored dur-
ing atomic modelling and exit wave generation, were categorised into their respective
classes depending on the chemical composition of the atomic site. For each class a
binary mask is generated where a binary disc is placed at each site corresponding to
that class. The width of the disc is defined by the user (see “spotsize” in Table 3.2).
Each class is a separate channel in that output. Each channel is a binary label for the
given class representing the probability of the pixels belonging to each class, which is
referred to as one-hot encoding.

These labels are useful for identifying and classifying atomic columns to probe atom
dynamics under various environmental conditions, forming strain maps, and identify-
ing defects [11, 94]. In the illustration a focal series of 3 images is presented, which
can be toggled by the “multifocus” parameter in Table 3.2.

Exitwave Labels

Description: The stored exit wave resampled to match the user defined sampling of
the input image. The label will have 2 channels to store the real and imaginary part
of the exit wave (Regression).

An example is shown in Figure 3.7 with a focal series of three images. The image
is computed from the exit wave, which was generated and stored from the atomic
modelling segment of the pipeline in Section 3.1. The exit wave corresponding to the
image is resampled to match the image, and the real and imaginary part is stored as
a 2-channel label. This label differs from the previous two, as it is no longer binary.
A neural network that has to reconstruct an exit wave from images will solve a regres-
sion task, rather than the segmentation task assigned by the Mask and Disk labels.
This requires different settings in the training process, which will be discussed in the
Section 3.3.

As described in Section 1.4, exit wave reconstruction is a common practice in HR-
TEM analysis and is usually computed from focal series consisting of 20-50 images [29,
38]. It is a popular method to facilitate structural determination of atomic systems.

This concludes the data generation segment of the pipeline. Rich datasets of simu-
lated HR-TEM images of diverse atomic systems are supplied with pixel-wise accurate
labels for various tasks. The next segment will involve training neural networks to map
between the images and given labels.
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Figure 3.6: Example of a Disk label for monolayer MoS2 (2H phase). Top: Presents a
focal series of 3 images of the MoS2 sample, which is generated by toggling the “multifocus”
parameter in Table 3.2. The images have a fixed size of 512 x 512 pixels. Bottom: Presents
the categorised sites and a corresponding “Disk” label as a 3-channel binary array (RGB)
classifying the pixels belonging to atomic columns of 1Mo, 2S, or 1S.

Figure 3.7: Example of an Exitwave label for monolayer MoS2 (2H phase). Top: Presents a
focal series of 3 images of the MoS2 sample, which is generated by toggling the “multifocus”
parameter in Table 3.2. The images have a fixed size of 512 x 512 pixels. Bottom: The
corresponding Exitwave label that is stored as a 2-channel array with the real and imaginary
part. The exit wave is resampled to match the sampling of the image. This sampling is
provided by the user - see Table 3.2.
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3.3 Neural Network Training
The previous sections describe how datasets of hundreds to thousands of randomly yet
realistically configured atomic systems can be generated with ease. From each model,
HR-TEM images can be simulated along with corresponding labels that will assign
the network a specific task to learn. These tasks consist of segmentation tasks by
classifying pixels into nanoparticle regions or atomic columns of a given category, or
the regression task of performing an exit wave reconstruction.

The next step is to feed this data into a neural network to train it for whichever
task required. Neural network training is split into three parts: Data Loading, Neural
Network Initialisation, and Feed Forward and Back Propagation.

Part 1: Data Loading
There must be a consistent way to feed data into the neural network for training.

One of the most vital aspects of this is to ensure that all images contain pixels in
the same range of intensities. This is most commonly referred to as normalisation
or standardisation, where the former is defined as shifting the pixel intensity range
between 0 and 1, and the latter is defined as shifting the pixel intensity range to have
a mean of 0 and standard deviation of 1. Standardisation is only applicable under the
assumption that the pixel distribution follows a normal distribution. This work applies
a standardisation method referred to as a “local standardisation”, which is defined as

Îxyc =
Ixyc − 1

Nc

∑
c(Ic ∗G)xy

1
Nc

∑
c

√
(I2

c ∗G)xy

; Gxy = e− x2+y2

2σ2 , (3.1)

for an image I with real space pixels (x,y) and c denotes the channel for an input
with Nc-channels. In the case of a focal series, with more than one input channel,
the subtracting term and normalisation term are both averaged over the number of
channels. The σ is defined by the “Normalisation Distance” in Table 3.2, which specifies
the “locality” of the standardisation and it is recommended that this distance is larger
than the defining features in the image. This method of standardising is robust to
empty or over-saturated pixels and varying illumination in the (x,y)-plane that may
occur in HR-TEM data.

Data augmentation is a key method to introduce sensible variations to the data in
order to avoid overfitting and train a more robust network. Common data augmen-
tations for images are adjusting the brightness (Eq. (3.2)), contrast (Eq. (3.3)), and
gamma (Eq. (3.4)) of the image. The operations are

Îxyc = Ixyc + U [a, b] (3.2)
Îxyc = (Ixyc − Īxyc) · U [a, b] + Īxy (3.3)
Îxyc = (Ixyc −min[Ixyc]) · U [a, b] +min[Ixyc] (3.4)

where U [a, b] defines a random number drawn from a uniform distribution between a
and b, and Īxyc denotes the mean of the image for a given channel. Other common data
augmentations involve flipping the images and labels both horisontally and vertically
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at random, which is also implemented. In this work an additional data augmentation is
applied, namely the image epochs described in Section 3.2. The images are loaded one
image epoch at a time, so that each training epoch utilises the same atomic systems
imaged at varying microscope parameters. When the training epochs are larger than
the image epochs, the training will continue and cycle through the image epochs as
many times as necessary. The image epochs, along with the brightness, contrast and
gamma augmentations, promote the robustness of the neural networks against varying
microscope conditions.

Part 2: Neural Network Initialisation
With the data prepared the next step is to initialise the neural networks. Neural

network initialisation involves defining the convolutional and other various layers, acti-
vation functions, and optimiser, all described in Chapter 2. In this work three existing
neural network architectures have been implemented: The U-net [95] (modified with
inspiration from the FusionNet [96]), U-net++ [97] (also modified with inspiration from
the FusionNet), and MSD-net [98]. All three neural network architectures have been
applied to various problems in general microscopy [11, 14, 98].

The MSD-net and U-net/U-net++ take different approaches in identifying features
across varying length scales. The U-net has its name from the characteristic U-shape
due to the series of down-sampling layers to spread features across a larger length scale,
followed by an equal number of up-sampling layers to return to the original resolution.
The down-sampling is achieved by a max-pooling, which takes the maximum of a set of
pixels as the value for a pixel in the down-sampled image. The up-sampling is achieved
by bi-linear interpolation. The stages of down-sampling and up-sampling are referred
to as “levels” of the U-net architecture. While the layer resolution decreases across
layers, the channels (number of feature maps - see Section 2.4) are increased.

The MSD-net in contrast retains the same resolution throughout all layers and the
same number of channels, but dilates the kernel to spread its weights over a larger region
(see Figure 2.3(b)). The dilation value iterates over some given range repeatedly.

The MSD-net belongs to the family of dense-nets, as every layer in the neural network
is connected to previous layers by concatenations following every convolution. These
concatenations are the skip connections introduce in Section 2.5 and share feature
information between different layers in the neural networks. The U-net applies skip
connections between outputs of the same resolution. As an extension to the U-net,
the U-net++ takes the U-net architecture and includes more skip connections across
outputs of layers at different resolutions, resulting in a more densely connected network.

An illustration of all three neural network architectures is presented in Figure 3.8
along with a legend defining the various layers (convolutional, max-pooling, up-sampling
etc.) constructed using the TensorFlow+Keras API [78]. The input channels and out-
put channels are automatically detected from the parameters file (refer to Table 3.2).
The output activation function will vary depending on the given label or problem
defined by the user. For segmentation problems, the output must apply a sigmoid
activation for binary segmentation and softmax activation for multi-class segmenta-
tion (see Section 2.3 for reasoning). The sigmoid/softmax activation is applied on a
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pixel-wise level by defining the output layer as a convolutional layer with a kernel size
of 1, effectively producing a probability for each pixel belonging to a given class. For
regression tasks the final output layer is a pixel-wise convolutional layer with no acti-
vation function applied to allow for the pixel-wise values of, for example, the real and
imaginary part of the exit wave to be the output. The script automatically initialises
the output activation based on the parameters file from Table 3.2. All networks apply
a PReLU activation function in hidden layers between the input and output for compu-
tational efficiency, as introduced in Section 2.3. The user also has the choice between
an RMSProp and ADAM optimiser (see Section 2.2), with the ADAM + AMSGrad
optimiser as a default [68].

Part 3: Feed Forward and Back Propagation
The final step is to train the neural network that has been initialised. The training

procedure, described in Chapter 2, consists of repeated feed forward and back propa-
gation steps i.e. training epochs to minimise the loss function between the label and
predicted output. Based on the parameters file (refer to Table 3.2) the loss function
will be automatically defined depending on the problem. Binary segmentation will
apply the binary cross-entropy loss function, and multi-class segmentation will use the
multi-class equivalent (see Eq. (2.7)). If the task is a regression, the loss function will
be a mean squared error loss function (see Eq. (2.6)). A visual of the training procedure
is shown in Figure 3.9 for the MoS2 multi-class segmentation problem of identifying
pixels belonging to 1Mo, 2S, 1S atomic columns, or the background. In this case a
focal series of 3 images is applied.

Figure 3.9: Illustration of training procedure for the MoS2 multi-class segmentation problem
of identifying pixels belonging to 1Mo, 2S, 1S atomic columns, or the background (BG). In
this case a focal series of 3 images is applied. The number of input channels is 3 and output
channels is 4.

The pipeline supplies Python scripts for running a training procedure for each of the
neural networks in Figure 3.8. Documentation for the MSD-net Python script is shown
in Listing 3.7, along with a U-net and U-net++ equivalent in Listings A.2 and A.3,
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respectively. The necessary inputs include the number of training epochs, the number
of convolutional layers (specific to the MSD-net), the path to the training data and
validation data from the previous segments in the pipeline, and a folder name for the
output where the trained neural network is stored along with the averages loss function
values after each training epoch. The user must have access to these values to ensure
that the loss function is minimised by the end of the requested number of training
epochs for both the training and validation data set.

$ python train_imageepochs.py [Epochs] [Layers]
[Training Data] [Validation Data] [Output Folder]
Optional: --filters [Number of channels]
Optional: --kernel [Kernel size]
Optional: --restart [Restart from epoch number]
Optional: --epochsave [Epoch interval for saving network]
Optional: --adam [Adam optimiser passed as dict with parameters]
Optional: --rmsprop [RMSProp learning rate]
Optional: --limitdata [Truncate training data at a given number]

Listing 3.7: An instruction on the Unix command-line usage of the Python script for training
an MSD-net.

At this point a user has the knowledge to run the data generation and neural network
training segments of the pipeline with only a few command in a Unix terminal. Within
an hour the user can generate over 1000 atomic models and over 10,000 images and
labels for training and validation. Training times can vary between hours to days
depending on the user defined options. All the scripts are therefore compatible with
HPC clusters in any case that it should be necessary. The simplicity of this is presented
in Listing 3.8 and Listing A.4 for two different examples.

# Data Generation (Atomic Models , Exit waves , Sites)
$ python make_MoS2.py example_data 1000
$ python make_MoS2.py example_data 500 --test

# Data Generation (Images and Labels)
$ python make_image_data.py example_data example_input_parameters.json
$ python make_image_data.py example_data example_input_parameters.json

--test

# Neural Network Training (MSD -net)
$ python train_imageepochs.py 100 50 example_data example_data -test

example_network

Listing 3.8: Example of running the data generation and neural network segment of the
pipeline, where a training and validation/test data set of MoS2 nanoflakes are generated with
images and labels defined by an input parameters file, and an MSD-net is trained.

The final segment involves deploying the trained neural network to validate their
performance on simulated data and apply them to experimental data for quantitative
data extraction.
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3.4 Python Objects for Data Handling
Following the previous sections, the user should have a simple interface to apply the
trained neural networks to both simulated and experimental images. For this pur-
pose two Python objects have been constructed: The Simulated_Data-object and The
Experimental_Data-object.

The Simulated Data Object
The basic idea of the Simulated_Data-object is to allow the user to intialise an object

in Python with the path to the image and label file, the path to the file containing
specific microscope parameters of that image (stored together with the simulated im-
ages), and the path to the parameters file defined by the user (see Table 3.2). The
initialised Simulated_Data-object enable the application of a trained neural network
on a HR-TEM image, visualisation of the result, and verification of the neural network
output by some metric. The neural network output is referred to as a “prediction” or
“inference”. Various metrics exist to gauge the performance of the prediction.

For regression tasks, such as the exit wave reconstruction, the mean squared error,
Eq. (2.6), is suitable as a score between the predicted exit wave and the ground truth
exit wave. The square root of Eq. (2.6) is also applicable and is known as the root
mean squared error.

When the task, however, is segmentation, the prediction (by the sigmoid or softmax
output activation) is a probability map of each pixel belonging to a certain class. By
applying a threshold probability, this prediction can be converted to a binary array,
classifying each pixel to a class by one-hot encoding. When comparing the binarised
prediction to the ground truth (which is also binary), each pixel in the prediction can
be considered as either a true positive (TP), false positive (FP), true negative (TN),
or false negative (FN) classification. A metric for segmentation tasks based on these
values is known as the F1-Score, which is defined as

F1 = TP

TP + 1
2 (FN + FP )

= 2 · P ·R
P +R

, (3.5)

where P and R are the precision and recall, respectively. The F1-Score is a harmonic
mean between the precision and recall. The precision is a measure of the neural net-
work’s ability to correctly classify pixels for a given class and is defined as

P = TP

TP + FP
. (3.6)

The recall on the other hand is a measure of the neural network’s ability to identify a
given class and is defined as

R = TP

TP + FN
. (3.7)

Ultimately, both a good precision and recall is desired, which motivates the use of the
F1-Score. This score ranges between 0 and 1, where 1 represents a perfect segmentation.
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An example of using the Simulated_Data-object is presented in Listing 3.9. This
example is an extension of Listing 3.8 and shows how the output of the pipeline is
leveraged by the Simulated_Data-object to contain the image and label, apply a stan-
dardisation, infer the prediction of the neural network, and compute an F1-Score be-
tween the prediction and label. See Table A.1 for an explanation of the individual
method attributes of the Simulated_Data-object.

import glob
# Select dataset
fn = ’example_data -test’

# Grab all images and labels , specific image parameters ,
# and the global input parameters file
image_parameters_file = fn + ’/parameters.json’
image_label_files = sorted(glob.glob(fn + ’/images_labels /*.npz’))
tem_parameters_files = sorted(glob.glob(fn + ’/tem_params /*’))

from temnn.analysis.SimulatedAnalysis import Simulated_Data
# Initiialise a Simulated_Data instance
simulated_data = Simulated_Data(image_label_files [0],

image_parameters_file ,
tem_parameters_files [0])

# Load the image , label , and parameters
simulated_data.load()
# Apply local standardisation
simulated_data.cp_local_standardise ()

import tensorflow.keras as keras
# Load the final trained model
network_file = ’example_network/model -0’
mod = keras.models.load_model(network_file)

# Apply the network , compute the F1 -Score ,
# and plot the image along with the result
simulated_data.infer(mod)
f1 = simulated_data.get_f1_score ()
simulated_data.plot() # plots the image and prediction side by side

# with a scale bar

Listing 3.9: Code example presenting the usage of the Simulated_Data-object.

The Experimental Data Object
The same ease is provided for experimental data as presented in Listing 3.10 and

is achieved using Hyperspy [99] to manage the dm3/dm4 or Tiff files that contain
the experimentally obtained image and metadata. Usually many lines of code are
required to load the image and extract specific metadata. The Experimental_Data-
object removes a lot of that complexity. The object is initialised with just a path to
the dm3/dm4 or Tiff file. The Experimental_Data-object will contain various metadata
as attributes. Utilising the class methods, the user can compute the dose, apply a
neural network, visualise the results, extract the Fourier transform, all with one line
of code.
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An example is shown in Listing 3.10, which is also an extension of Listing 3.8,
where the trained neural network is supplied to the initialised instance of the
Experimental_Data-object. Working with experimental data means that there is no
ground truth, disallowing the use of a metric to gauge the performance as in the sim-
ulated data case. See Table A.1 for an explanation of the individual methods and
attributes of the Experimental_Data-object.

import glob
# Select dataset
fn = ’exp_example_data ’
files = glob.glob(fn + ’/Hour_00/Minute_ */ Second_ */*. dm4’)

# Initialise an Experimental_Data instance
from temnn.analysis.ExperimentalAnalysis import Experimental_Data
experimental_data = Experimental_Data(files [0])

# Load the image and metadata
experimental_data.load()
# Apply local standardisation
standardised_image = experimental_data.cp_local_standardise ()

import tensorflow.keras as keras
# Load the final trained model
network_file = ’example_network/model -0’
mod = keras.models.load_model(network_file)

# Apply the network and plot the image along with the result
inference = experimental_data.infer(mod)
dose = experimental_data.compute_dose ()
experimental_data.plot() # plots the image and prediction side by side

# with a scale bar

Listing 3.10: Code example presenting the use of the Experimental_Data object.

These two previous code listings (Listings 3.9 and 3.10) present how the user can
continue the pipeline and easily apply the trained neural networks and extract the
inferences, whether it be a mask segmentation, atomic column segmentation, or exit
wave reconstruction.

3.5 Instance Segmentation Tracking for Large-Scale
Analysis

Last but not least the user should have access to tools that apply these neural networks
in consistent ways to extract information. This section focuses on the mask segmen-
tation of oxide supported nanoparticles. These segmentations are a powerful tool to
automate region of interest (ROI) selection with pixel-wise precision and to extract
properties such as the position and shape of each region (in this case nanoparticles).
The aim is to do this in a large-scale sense with minimal user interference to extract
statistically signification data on various properties, similar to Refs. [9, 13].
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Figure 3.10: Illustration of the pseudo-instance segmentation implemented to separate seg-
mented regions into individual instances. This is done by performing a watershed on the
landscape of the distance map of the binary segmentation. Separating instance can is the first
step in facilitating large-scale analysis.

HR-TEM images are segmented frame by frame. Each segmentation is a map over
the probability of each pixel belonging to a certain class. After applying a threshold,
a binary map is produced highlighting the nanoparticle regions, as exemplified in Fig-
ure 3.5. To analyse the nanoparticles individually the regions must be separated, where
each region should cover a single nanoparticle. To do so the segmentation must be sep-
arated into individual instances, this is known as instance segmentation [6]. Obtaining
individual instances is achieved by taking the binary mask and computing a distance
map - a map of the distance from every pixel with value 1 to the nearest pixel with
value 0. An example is shown in Figure 3.10, where segmented regions are even overlap-
ping. The distance map forms peaks at the centre of the individual segmented regions.
These peaks are passed as markers to a watershed algorithm which fills a unique value
into each peak up to the nearest boundary [100]. This performs a pseudo-instance
segmentation, where the separation of instances is done post-segmentation.

The pseudo-instance segmentation approach converts the binary array into an array
with multiple unique values for each ROI. The unique value is used as an identification
number (ID) to tag the ROI. An Instance2D-object is defined that stores the ID along
with properties of the ROI, such as the area computed from the segmentation and the
centre-of-mass. A Slice-object is defined to contain the entire segmented frame, which
can hold multiple instances of Instance2D-objects i.e. an image can contain multiple
nanoparticles where each nanoparticle is separately accessible. To track properties of
each ROI-instance across frames, individual ROI-instances are connected between con-
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Figure 3.11: Illustration of how individual instances are tracked across frames. Every
instance in a frame that is near an instance in the previous frame is selected and the overlap
of the selected instance with the instance from the previous frame is taken. The selected
instance with the largest overlap, above a threshold percentage, is assigned the same ID.
Tracking the instances allow for the extraction of properties such as the area, and centre-of-
mass, of each instance across all frames.

secutive frames. If the area of overlap of two ROIs in two consecutive frames is over a
threshold percentage, then the latter ROI-instance ID is matched with the former ROI-
instance ID, as shown in Figure 3.11. If multiple ROIs have a significant overlap, then
the one with the highest overlap percentage is taken. This connects all ROI-instances
across all frames, so that properties can be extracted across frames i.e. as a function
of time. The threshold percentage controls the amount of movement there may be for
a given ROI between consecutive frames. This is currently set to 50%.

Table 3.3 summarises the method attributes of the Instance2D-object and the Slice-
object. The former stores the ROI array along with the ID and properties, and the
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latter stores the segmented frame and multiple instances of Instance2D. It is beneficial
to construct it this way as it is straight forward to implement new properties into the
Instance2D-object, making the code easily expandable.

Table 3.3: Overview of classes handling the the segmented frames and
segmentation instances, to extract properties of each nanoparticle across
all frames..

Class Instance2D
Contains a ROI-instance together with its id, properties e.g. area, centre of mass etc.

Attributes Descriptions
get_id()/set_id() get/set the id for the instance. This is used to set the id of

an instance in a frame to match an instance in the previous
frame with significant overlap.

get_area()/set_area() get/set the area of the ROI-instance. This is set using the
number of pixels covered by the segmentation multiplied by
the sampling.

get_com()/set_com() get/set the centre of mass (COM) of the ROI-instance.

Class Slice
Contains the frame segmentation and ROI-instances.

Attributes Descriptions
get_instances_2d() returns all ROI-instances.

add_instance_2d() adds a ROI-instance.

Instance tracking across many frames of data facilitates large-scale data analysis
and will serve as a core concept behind the analysis tools presented in Chapter 6.
The Python objects in Section 3.4 are available as part of the pipeline and can be
utilised in conjunction with the Slice- and Instance2D-objects to analyse many frames
of data containing many ROI. All the objects are prepared to be used with Jupyter
notebooks. Instead of presenting examples of large-scale analysis with Jupyter notebooks,
however, Chapter 6 presents how these tools have been implemented with a graphical
user interface.
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CHAPTER 4
Results: Software Pipeline

Chapter 3 presented a software pipeline to generate large and diverse data sets of HR-
TEM images with paired labels, and to train neural networks for various tasks. The
label paired with the image defines the task and three main types of labels and tasks
presented in Section 3.2 were:

– Exitwave labels for training a neural network to regress between the HR-TEM
image and the real and imaginary part of the exit wave,

– Mask labels for training a neural network to segment regions of the HR-TEM
image that belong to a region of interest, for example a nanoparticle,

– Disk labels for training a neural network to segment and classify individual atomic
columns in material samples.

The following chapter will present results obtained for each task. The results have
been compiled into publications available in Chapter 8. The presentation in this chapter
will be a summary of the main highlights from each publication. For full details of all
the results and more specific details regarding the methods and discussions refer to the
the publications in Chapter 8.

While being a summary of the main results of this work, this chapter is also a
showcase of the applications of the software pipeline for neural network assisted HR-
TEM from Chapter 3. All training and validation/test data generated and neural
network training in the upcoming sections is achieved by executing the lines in List-
ing 3.8 for the various contexts. Each data set is constructed based on the atomic
modelling scripts from Section 3.1 and a parameters file (defined in Table 3.2 with
an example in Listing A.1) that defines the label along with the range of microscope
parameters and noise to set the diversity of the HR-TEM images in the data set. The
specific parameters for each publication are available in Chapter 8. A large degree of
the visualisations and computed metrics are obtained using the Simulated_Data- and
Experimental_Data-object presented in Section 3.4.

Chapter 2 introduced convolutional neural network parameters such as the convolu-
tional kernel size, learning rate, optimiser, and more, all of which have a default in
the software pipeline, but are customisable by the user, as described in Section 3.3. In
all of the following publications the optimal parameters were determined by hyperpa-
rameter tuning, which consists of running the training procedure multiple times for a
different set of parameters, and manually determining which had the best convergence
of the loss function. The “best” convergence involves converging to a minimum within
a reasonable number of training epochs, and obtaining the lowest minimum of the loss
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function for both the training and validation data set. The convergence of the loss
functions over training epochs, otherwise known as learning curves, are available as
supplementary material for each publication in Chapter 8.

4.1 Publication I: Reconstructing the Exit Wave of 2D
Materials in High-Resolution Transmission Electron
Microscopy Using Machine Learning

In Publication [I], the aim was to present the applicability of neural networks for the
exit wave reconstruction task described in Section 1.4. The current state of the art for
exit wave reconstructions are algorithms such as the Gerchberg-Saxton algorithm [54]
and only a few attempts have been made to utilise deep learning for phase retrieval
in TEM [15] and 4D-STEM [101]. This publication is the first to deploy a neural
network to regress between a focal series of HR-TEM images and both the real and
imaginary part of the exit wave. The main aim was for the neural network to learn
the deconvolution of the CTF defined in Eq. (1.29), and to do it with less information
than a traditional algorithm.

Exit wave reconstruction algorithms require detailed knowledge of several CTF pa-
rameters and large focal series in order to perform the complex deconvolution [29].
Figure 4.1 shows a predicted exit wave by a U-net given a focal series of 3 images and
no information of the specific CTF parameters. The U-net was trained on a data set
of 1000 monolayer MoS2 systems, where the atomic positions are randomly perturbed
based on a Gaussian with a spread of 0.01 Å and the atomic potential is smeared by
a Gaussian with a spread of 0.0030 Å (see the distort and debyewaller setting in
Listing 3.5). 5% of the atomic columns are randomly selected for vacancy creation
(1S columns) and another 5% for holes (empty columns), additionally all systems are
randomly tilted up to 10◦ off the [001] zone axis. For each atomic system a focal series
of 3 images is generated from a range of CTF and MTF parameters, varying degrees
of noise (shown in Publication [I]), and 10 image epochs (see Figure 3.4), providing a
total of 10,000 diverse focal series. Each focal series is a set of 3 images with (50 ± 1)
Å in between. The prediction shows an excellent exit wave reconstruction that reveals
the atomic structure of the MoS2 nanoflake and the randomly placed defects (Mo-,
single S-, and double S-vacancies), with a root mean squared error (RMSE) score of
0.0062 compared to the ground truth exit wave. This prediction is the median RMSE
score from the validation data set of 1000 monolayer MoS2 systems and focal series.
The region with the largest error, which is zoomed-in in the inset of Figure 4.1, shows
a misplacement of the atomic column in the exit wave. This misplacement corresponds
to a single pixel, or 9.7 pm, which is below realistic resolutions of HR-TEM images.

Monolayer samples are arguably as simple as it gets. Real samples will often involve
the presence of other components, such as a substrate. The construction method of
monolayer MoS2 nanoflakes in Section 3.1 was extended to included graphene sub-
strates as a way to introduce more complexity to the problem. Monolayer graphene
flakes are constructed identically to the way the monolayer MoS2 nanoflakes are con-
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Figure 4.1: Exit wave reconstruction of a monolayer MoS2 nanoflake by a U-net. The first
two columns present the simulated atomic structure and the associated simulated focal series
of 3 images as input to the U-net. The third column shows the real and imaginary part of the
ground truth exit wave. The fourth columns shows the real and imaginary part of the exit
wave prediction by the U-net. The last columns shows the difference in the real and imaginary
part between the ground truth and prediction. The RMSE of the prediction is 0.0062. The
same colourmap applies to all figures. Reproduced from Publication [I].

structed. The graphene flakes are then placed below the MoS2 nanoflake along the
[001] zone axis. The MoS2 and graphene flakes are aligned in different ways and placed
at varying distances to introduce a large diversity in the overlaps of atomic columns
(more info in Publication [I]). In some regions there is even no overlap at all, so the
neural network will see some monolayer MoS2 in the data set.

Figure 4.2 shows the predicted exit wave by a U-net trained on the MoS2@graphene
data set with the same number of atomic systems and focal series as the MoS2 data set,
which again shows excellent performance with an RMSE of 0.0122 and that the largest
regions of error are again present due to a single pixel misplacement of atomic columns.
The U-net is able to reveal the atomic structure of both the MoS2 and underlying
graphene, along with vacancy defects present in both nanoflakes.

The distribution of the RMSE over a validation set of 1000 focal series of 1000
different atomic systems is shown in Figure 4.3. The difference in the RMSE distribu-
tion between the two data sets highlight that the difficulty increases when including
the graphene substrate. The decrease in performance when the graphene substrate
is included is sensible since the neural network aims to reconstruct both the atomic
structure of the MoS2 nanoflake and the graphene substrate, along with handling the
larger variation of intensities present in the images. An additional difficulty was added
in the paper by training the U-net on a data set of thousands of 2D materials from
the Computational 2D Materials Database (C2DB) [102, 103]. Based on the RMSE
distribution of this data set being significantly worse (shown in Publication [I]), it was
concluded that the neural networks should be trained on specific atomic systems for
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Figure 4.2: Exit wave reconstruction of a graphene supported monolayer MoS2 nanoflake
by a U-net. The columns are the same as in Figure 4.1. The prediction shows that atoms
are located both in the MoS2 nanoflake and the underlying graphene support. The RMSE
of the prediction is 0.0122. The same colour map applies to all figures. Reproduced from
Publication [I].

more reliable performance. The fact that the neural network performs better when
trained on specific atomic systems reveals that it in fact utilises information of the
structure of the specific atomic system to generate the exit wave and does not solely
perform a deconvolution of the CTF. This conclusion is also backed by a few selected
atomic systems from the C2DB that exhibit a small deviation in the symmetry of the
structure, where the neural network fails to predict that break in symmetry or places
nonphysical defects to satisfy a more symmetric structure (shown in Publication [I]).
The U-net had seen a larger number of symmetric structures and ultimately preferred
a presence of symmetry. It could be that training on the specific structures with less
symmetry would allow the U-net to provide more reliable exit waves of that structure.

It is not sufficient that the neural network merely predicts an exit wave that is visually
and quantitatively similar to the ground truth, but also predicts an exit wave that is
useful for structural determination. The method for utilising exit waves for structural
determination was presented in Section 1.4, which is achievable via channelling theory
and analysis of the wave function at each atomic column. The mass and defocus circle
(see Figure 1.5(b)) is achievable by plotting the complex values of the exit wave at the
atomic columns on an Argand plot. The atomic columns are identified in the change in
the wave function, i.e. |ψcolumn

ew (r, z) − 1| (see Eq. (1.31)), by traditional peak finding
and are then separated into either an Mo or S class based on their separating distance.
Each peak corresponds to a complex value in the exit wave that can be plotted for
analysis. The Argand plots for the predicted and ground truth exit wave are presented
in Figure 4.4 for the same median example in Figure 4.1. The predicted exit wave
shows a clear separation along the mass circle, separating the 1Mo, 2S, and 1S atomic
columns. The variation along the optical (z-)axis is, however, missing in the prediction.
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Figure 4.3: Histograms of the RMSE of the focal series in the validation data sets. Blue is
the neural network trained on the monolayer MoS2 nanoflakes, and orange is the graphene
supported monolayer MoS2 nanoflakes. It is clear that the increased complexity from unsup-
ported to supported systems introduces a larger error. Modified from Publication [I].

There is no spread along the defocus circle, as there is in the ground truth exit wave, so
the predicted exit waves cannot be used to differentiate between defects in the upper
or lower layer of Sulphur from the 1S atomic columns.

Figure 4.4: Argand plots of the complex value of the exit wave function at the local maximum
of |ψcolumn

ew (r, z) − 1| (see Section 1.4) for the same system as in Figure 4.1. The 1Mo peaks
are marked with blue pluses, and 2S/1S peaks with green crosses. The Argand plots of the
predicted exit wave present the separation of 1Mo - 2S - 1S atomic columns, however lack the
z-position difference between 1S columns as present in the ground truth. Reproduced from
Publication [I].

A U-net trained on the MoS2@graphene data set was applied on an experimental focal
series from Ref. [29], where the prediction along with the focal series is presented in
Figure 4.5. As a disclaimer, it should be noted that the experimental data set contains
a graphite support (i.e. multi-layer graphene - instead of the monolayer graphene as in
the simulated training data), as well as Co atoms. Regardless of the extra complexities,
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the neural network is clearly able to identify atomic columns in the MoS2 nanoflake.
The neural network also provides a prediction on the atomic columns of carbon atoms
in the support, however these cannot be considered reliable for any structural analysis
due to the significant mismatch between the simulated training data and experimental
data.

The Argand plots for any system with a substrate present, including the experimental
focal series and the simulated MoS2@graphene data set, are not directly interpretable.
There is a large variation in intensities, due to the varying overlap of atomic columns in
the material of interest and the underlying substrate. This variation causes a significant
smearing of values along the mass circle of the Argand plot (shown in Publication [I]).
To circumvent this issue, the substrate is commonly removed from the image by Fourier
filtering, permitting an analysis with Argand plots [29]. The problem of analysing
Argand plots for supported materials does not affect the method of reconstructing the
exit wave presented in this work and was therefore not treated here. A comment will
be made on how neural networks can assist treatment of the substrate in Section 7.1.

Figure 4.5: Applying the neural network to three experimental images (top row) results in
the exit wave function depicted in the bottom row. The defocus values are as reported by
MacTempas (overfocus), which uses the opposite sign convention from abTEM and this work.
The colours are the same as in Figure 4.1 and Figure 4.2. Reproduced from Publication [I].

In conclusion, neural networks have been tailored to regress between a focal series
to the exit wave function. The neural networks prefer to be trained on specific atomic
systems and were shown in Publication [I] to produce exit waves comparable to those
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reconstructed by traditional algorithms. The neural networks do not require any CTF
values as input, as opposed to the traditional algorithms, and require far fewer images in
the focal series. This is a novel method that prove neural networks serve as an efficient
tool to obtain approximate exit waves that can be used to determine atomic scale
structure to a limited degree (missing defocus dependency), before selecting images for
a full exit wave analysis by traditional methods to obtain the full 3D positions.

4.2 Publication II - Quantifying Noise Limitations of
Neural Network Segmentations in High-Resolution
Transmission Electron Microscopy

In Publication [II], the aim was to identify the optimal noise conditions for neural
network segmentations. The human interpretation of HR-TEM images is largely inca-
pacitated by the presence of noise and there is a general interest in the community to
identify noise robust models for data extraction [48, 49]. Multiple images are typically
averaged to wash out noise and enhance features of the image [104], even for existing
deep learn applications [105]. Averaging multiple images, however, reduces the time
resolution of the interpretable result. The frame electron dose (or simply frame dose)
is one of the determining factors of the degree of noise present in the image [45]. On
one hand, a low frame dose means a high degree of noise. On the other hand, the elec-
tron beam can induce irreversible effects to the material sample and so low frame dose
imaging is desired. The aim of this work is to explore the reliability of neural network
segmentations at low frame dose, in order to extract the same quality of information
at less damaging conditions and with a high temporal resolution.

An experimental data set was acquired by imaging a CeO2 supported Au nanoparticle
with a continuously increasing frame dose from 101 to above 103 e−

/Å2. The images
were produced on a Gatan OneView, which is a scintillator based detector and so the
present noise is not purely Poissonian. A full description of how noise can be modelled
is provided in Section 1.3. In short, there is a shot noise contribution from the electrons
incident on the scintillating material, whose spectral profile is altered by the MTF, and
after scintillation there is, amongst other sources, an additional Poisson distributed
readout noise. While the readout noise is constant, the shot noise is controlled by the
frame dose. As an approximation, the total noise distribution is modelled as a sum
of two Poisson distributions, Eq. (1.27), one source from the shot noise and the other
from readout noise, although in reality there are other sources present.

The parametric form of the MTF in Eq. (1.25) was fitted to the power spectral
density (i.e. the norm squared of the Fourier transform) of a vacuum region in every
image frame of the experimental data set. Figure 4.6(a) presents the distribution of
each parameter as a function of frame dose. The C value is the high spatial frequency
limit of MTF and can be interpreted as a noise floor (see Figure 1.4), which shows a
clear dependency with the frame dose. This is speculated to be due to the dominating
shot noise at high frame dose when ND >> N0 in Eq. (1.27), which forces the C value
to 0 due to the smearing of each electron detection at the scintillator. The readout
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noise appears after the scintillating material and is therefore not affected by the MTF,
which lifts the C value to a finite value. The value of C represents the fractional
contributions of the shot noise and readout noise to the total noise. Figure 4.6(b) shows
the distribution of the MTF parameters for a simulated replica of the experimental data
set. The C dependency, or the readout to shot noise ratio, as a function of frame dose
is reproduced. This result highlights that there are two primary noise sources at play.
The user of the software pipeline can specify the readout noise contribution via the
N0 parameter in Table 3.2. In Publication [II], the N0 was fitted from its fractional
contribution to the C value as a function of electrons per pixel. The fitted value was
N0 = 0.01 and applied to the simulated series used in Figure 4.6(b) by a uniform
distribution of 0.01 ± 50%. The c0 and c3 parameters are varied within a uniform
distribution, where the limits are supplied by the user in the input parameters file
from Table 3.2. An intuitive understanding for their dependency is missing, however
they both vary on a smaller scale than the C parameter. The c0 parameter primarily
controls the spatial frequencies maintained in the image by tuning the half-maximum
of the MTF along the spatial frequency axis. When this value approaches 1, the MTF
approaches a flat distribution across spatial frequencies below the Nyquist frequency,
which would resemble the noise profile of a direct electron detector [52]. The values of
c0 in the fitted range of Figure 4.6(a) represent a strong presence of the MTF.

(a) (b)

Figure 4.6: The fitted parameters of Eq. (1.25) for each frame in (a) the experimental data
series and (b) a simulated set of images to replicate the experimental data series. Fits with
R2 ≥ 0.98 in the experimental images are marked by a white dot. The data points for the
simulated images all had fits with R2 ≥ 0.98. The orange line represents the mean value.
The C dependency on the frame dose is replicated in simulations via modelling of the noise
contributions through a modulated electron dose dependent shot noise and constant readout
noise contribution. The c0 and c3 parameters are simulated within a uniform distribution.
Reproduced from Publication [II].
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The final frame of the acquired experimental series is considered to be the most
“interpretable” image, since it has the highest frame dose i.e. the lowest degree of noise,
and the segmentation of this frame by a neural network is assigned as the ground truth
segmentation. The nanoparticle is in vacuum at 200 ◦C and so significant morphological
changes are not expected throughout the series. The segmentation of frames up to the
last can be compared to the last, ground truth segmentation, as a way to gauge the
performance. The “area of segmentation”, which is defined as the number of pixels
segmented with a probability above 90% times the area of each pixel based on the
sampling, is equipped as a metric. The idea is that the frame dose is eventually so low
that the area of segmentation drops to zero. This experiment allows for the lower frame
dose limit of neural network segmentations by the models in the software pipeline to
be identified. If the aim of the experiment is to track the area of the nanoparticle as
a function of time, this study will provide an idea of the lowest frame dose possible
where the area segmented by a neural network is the true area.

Table 4.1: Frame dose ranges for simulated images. L and U denote the lower and upper
range, respectively. The value of the frame dose controls ND of Eq. (1.28) and is defined by
the user in the input parameters file from Table 3.2. From Publication [II].

Parameter L U Unit
High frame dose range 102 106 e−

/Å2

Low frame dose range 101 104 e−
/Å2

A comparison of two neural networks in the software pipeline is made in Publication
[II], namely the U-net and MSD-net, from Section 3.3. Two data sets were generated
with different ranges of frame dose shown in Table 4.1 and used to train two separate
neural networks of each model. Both data sets contain the same 1000 CeO2 supported
Au nanoparticle systems, that are tilted up to 3◦ off the [110] zone axis (see Listing 3.3),
and applies 10 image epochs, resulting in 10,000 training images. As presented in
Figure 4.7, the MSD-net trained with the high frame dose range shows a promising
ability to segment experimental frames below the lower limit of the high frame dose
range training data set (see U-net results in Publication [II]). This means that the
MSD-net learns to distinguish signal from noise well enough to generalise outside the
training data. The MSD-net trained on the low dose range provides more significant
segmentations at lower frame doses, which is expected. The area of segmentation is
safely converged for both models at approximately 200 e−

/Å2, which is the first reported
lower limit of a reliable full neural network segmentation. Segmentations below this
limit should only be equipped for object detection purposes until approximately 30
e−
/Å2, where 50% of the nanoparticle is segmented, which would be useful for simply

detecting the presence of nanoparticles.
The added complexity from the MTF for scintillator based detectors, as described in

Section 1.3, is also studied. The importance of including an MTF for reliable results
has been established in previous works [11], but there is a lack of understanding on
how to properly model the MTF. This work explores the effect of tuning the MTF by
providing different ranges of parameters in Eq. (1.25). Multiple training sets of identical
atomic systems, but varying MTFs, are created by writing multiple input parameter
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(a) (b)

Figure 4.7: Comparison of the MSD-net trained with simulated images within the high
frame dose range to a separate MSD-net trained with simulated images within the low frame
dose range (see Table 4.1). (a) Segmented area of each model as a function of frame dose.
Black dashed line represents the convergence of the area of segmentation, symbolising where
the network segmented the entire nanoparticle. The minimum and maximum area beyond
this point form the shaded grey bar as a visual aid for the target area of segmentation. Colour
coded dashed lines for each model represent the frame dose at which the model achieves 50%
segmentation of the nanoparticle. (b) Colour coded examples of the segmentation at 49 e−/Å2

overlapped with the segmentation of the final frame (ground truth). This highlights the ability
to achieve low dose segmentation. Reproduced from Publication [II].

files (Table 3.2), one for each MTF model, and generating images based on each set
of parameters for the same set of atomic systems. An optimal model of the MTF was
identified by studying the area of segmentation curve by neural networks trained with
each MTF model. The best MTF model should avoid over-segmentation, where vacuum
regions of noise triggers the segmentations, and achieve significant segmentations in
experimental images with low frame dose. Overall, the MTF model should assist the
neural network in achieving reliable segmentations across the entire frame dose range of
the experimental data set (see Publication [II]). The optimal model contained a range
of MTF parameters that both are in the fitted range of Figure 4.6(a) and maintained
spatial frequencies up to the half-Nyquist frequency (i.e. a c0 up to and slightly above
0.5). It is an interesting result that the MSD-net seemingly prefers a larger range of
MTF parameters and not just values within the fitted range of the experimental data
set. It seems that preserving larger spatial frequencies provides richer information for
the MSD-net to distinguish between signal and noise, but that parameters within the
fitted range of the experimental data set are also still required to ensure that the neural
network is optimised for that data set.

In conclusion, this work reported a quantitative limit based on the frame electron
dose for neural network segmentations by the models implemented in the software
pipeline, providing users with the knowledge on how to design suitable experiments
that should be analysed by these neural networks. A closer look at modelling the
noise contributions and the MTF was presented to optimise simulations for training.
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Information regarding the electron dose limit ultimately provides knowledge of the
degree to which the neural networks in this software pipeline can assist microscopists
in extracting data from HR-TEM images obtained with less damaging electron beam
conditions. This knowledge also serves as a benchmark for other groups to compare
the robustness of their models as a function of frame dose, hopefully resulting in the
advancement of models for extracting reliable information at low frame dose.

4.3 Publication III - Identifying Atomic Positions in MoS2
with Neural Networks using Focal Series from
High-Resolution Transmission Electron Microscopy

In Publication [III], the aim was to gauge the ability of all three neural network archi-
tectures (U-net, U-net++, and MSD-net) from Section 3.3 in identifying the various
atomic columns in monolayer MoS2 (2H phase) from HR-TEM images. The atomic
columns present are 1Mo, 2S, and 1S columns, which were introduced in Section 3.2 as
a multi-class segmentation task. Several works have implemented deep learning frame-
works to identify primarily defects in 2D monolayer materials, however most of this
work is for STEM images [94, 105]. The intensities in STEM are closely related to the
mass of the atomic columns, making it comparatively easier to differentiate between
the various atomic columns present in the STEM image. TEM provides a higher time
resolution for defect studies and lower electron doses, but atomic columns are difficult
to interpret. This difficulty is depicted in Figure 4.8(c) with the line scan of the inten-
sities over 2S, 1Mo, and 1S atomic columns in simulated HR-TEM images at various
defocus values. At none of the defocus values is it as clear where each of the atomic
column classes would be placed along the line scans compared to STEM intensities [91,
94]. In TEM other techniques, such as Fourier filtering, are often applied to identify
vacancy defect atomic columns [92].

The three neural networks were trained using the software pipeline from Chapter 3
to segment the various atomic columns from a focal series of 3 images. The data set
for training consisted of 1000 monolayer MoS2 systems with randomly placed vacancy
defects. The defect percentages for each atomic system ranged between 0-20% of
atomic columns with a S vacancy (1S columns) and 0-5% of atomic columns for Mo
vacancies (empty columns). All atomic positions are perturbed based on a Gaussian
with a spread of 0.01 Å (see the distort setting in Listing 3.5). The atomic systems are
tilted up to 1◦ off the [001] zone axis and are imaged with 10 image epochs, resulting
in 10,000 focal series for training. The focal series images are separated by a defocus
of (50 ± 1) Å.

In order to have a more accurate measure of the performance a new F1-Score is
introduced - the atomic F1-Score. The ordinary pixel-wise F1-Score in Eq. (3.5) mea-
sures both the ability for the neural networks to identify and correctly classify every
atomic column, as well as place the atomic columns with pixel-wise precision. Given
samplings where tens of picometres represents a pixel, this measure is sensitive to mis-
placed atoms at a resolution that is negligible. In order to place more emphasis on
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the identification and classification of the atomic columns, the ground truth peaks are
located, and peaks within the predictions are matched within a 10 pixel radius. True
positives (TP) are defined as atoms identified in the predictions that are placed within
10 pixels from a ground truth atom. With a sampling of 0.1 Å/pixel, this corresponds
to predicting the atom within 1 Å from the correct position. The false positives (FP)
and false negatives (FN) are then defined as

FP = No. of predicted atoms - TP, (4.1)
FN = No. of ground truth atoms - TP . (4.2)

Figure 4.8(a) shows a distribution of the atomic F1-Score over a data set of 500
focal series for 500 MoS2 monolayer systems, covering a large range of microscope
parameters (shown in Publication [III]). The distribution highlights a perfect atomic
column identification and classification for over half of the data set. The best example
of the MSD-net is shown in Figure 4.8(b) that visualises the number of atomic columns
that are being classified, which would be an extraordinary task for a human due to
the difficulties in interpreting the intensities and the time it would take to perform
this. The bottom rows of Figure 4.8(c) show the neural network prediction against the
ground truth atomic columns of the focal series shown in the top row. This shows that
the neural network achieves precise classification of the atomic columns regardless of
the complicated intensities present.

The next step was to verify whether the network required a focal series at all. Fig-
ure 4.9 presents the performance of the same neural networks trained with a data set
of the same atomic systems with a single image, a focal series of two images, and a
focal series of three images, with a constant defocus difference of (50 ± 1) Å. There is a
considerable performance boost from a single image to a focal series of 2 images, where
only the U-net++ seems to be struggling. Moving to the 3 image focal series brings all
networks to their peak performance. In Publication [III], only the Cs and defocus were
varied, which are the dominant terms for well-aligned micrscopes, however involving
higher order CTF parameters could alter the number of required images in the focal
series.

An emphasis was placed in Publication [III] on the amount of data required and how
large the neural networks have to be, in terms of the number of trainable parameters.
The performance of all models were shown to converge at 100 focal series (100 atomic
systems and 10 image epochs) in the training data set (shown in Publication [III]). The
number of trainable parameters is one way to fairly compare neural networks. During
training the neural network is attempting to tune these parameters in order to minimise
a high dimensional loss function, as described in Section 2.2. It can be argued that the
optimal neural network is one that minimises this loss function with the fewest number
of parameters. Typically, increasing the number of parameters also increases training
and inference times, which justifies another reason to identify the fewest parameters
possibles to solve the task. All neural networks had a maximum average atomic F1-
Score at around 106 trainable parameters, but did not suffer significantly below this
(shown in Publication [III]).

As a final test a separate validation/test data set was generated containing defocus
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(a)

(b) (c)

Figure 4.8: (a) Distribution of atomic F1-Scores for each network. All three present very
strong detection of Mo, 2S, and 1S atomic columns. (b) Best MSD-net segmentation from the
validation data set, visualising the background (BG) and all the identified atomic columns of
varying chemical composition. (c) Simulated focal series where a line scan is placed over two
Mo columns, a single 2S column, and a single 1S column. The intensities of the image line
scans in the middle present the complexity of deducing atomic columns in HR-TEM images,
however feeding a three image focal series (an example is shown at the top) to a neural network
provides perfect atomic column identification, as shown at the bottom comparing the ground
truth (GT) and prediction (Pred.) line scans. Reproduced from Publication [III].



66 4 Results: Software Pipeline

(a) (b)

(c)

Figure 4.9: The ability, based on the atomic F1-Score, of all three networks to classify 1Mo,
2S, or 1S columns given (a) a single image, (b) a focal series of 2 images, or (c) a focal series
of 3 images. Dashed lines represent the 10th percentile. A focal series of 3 images marks the
lowest number of images required for peak performance from all neural networks. Reproduced
from Publication [III].

values outside of the range defined in the training data set. This gauges whether the
neural networks utilise the focal series well enough to generalise outside of the range
of the training data. Figure 4.10 shows that this is not the case, as the performance
is considerably worse in the defocus range not included in the training data set. The
neural networks were able to identify 1Mo and 2S columns without much difficulty,
but extreme weaknesses were present in the identification of 1S columns (shown in
Publication [III]). There may be a more complicated contrast relationship for 1S atomic
columns compared to the 1Mo and 2S atomic column.

In conclusion, all neural network architectures from Section 3.3 exhibit a pronounce
ability to differentiate between 1Mo, 2S, and 1S columns in HR-TEM focal series,
despite the complexities of the intensity variations. This serves as a powerful tool to
probe atomic column positions in materials with multiple chemical species to study
dynamics and defect formations under different environmental conditions. Tracking
defect formation and lattice deformations at the atomic scale can assist studies aiming
to understand beam induced effects in materials with a higher time resolution and
lower electron dose.
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Figure 4.10: Atomic F1-Score versus the minimum defocus value in the focal series. This
data set contained defocus values outside the training range, and the figure shows that the
neural networks do not generalise well outside the range of the training data. Reproduced
from Publication [III].
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CHAPTER 5
Software: An Extension to
Model Realistic Atomic

Vibrations
The many atomic configurations generated in the software pipeline (Chapter 3) are
all static snapshots of atomic systems, however reality is dynamic; Real atoms are
moving and each image is an integration of several snapshots of the dynamic atomic
system over the exposure time. Atomic vibrations are occurring on a time scale that
are considerably faster than the exposure times of HR-TEM microscopy and if the
vibrations are significant this leads to the smearing or blurring of atomic columns [29].
This section will explore the importance of including dynamical behaviour into the
images to further bridge the gap between simulation and experiment.

It was already shown in Section 3.1 that the atoms in the system can be perturbed
by an amount sampled from a Gaussian distribution to displace atoms out of their
pristine positions. This introduces some disorder into the system. The effects of
dynamic blurring can be implemented in two ways:

– The smearing of the atomic potential by a Gaussian,
– Averaging over multiple exit waves/images, known as the frozen phonon configu-

ration method.

The former operates with an effective potential that is the convolution between the
static potential of the atoms, V(r) and a thermal blurring, B(r),

Veff (r) = (V ∗B)r, (5.1)

where r is a real space 2-Dimensional vector in the lattice plane, perpendicular to the
optical axis [29].

The thermal blurring can be modelled as a Gaussian with a defined width. This
width is typically referred to as the Debye-Waller factor, which is formally defined as
a temperature related probability for elastic scattering [106], but has been applied in
HR-TEM as a blurring parameter due to thermal vibrations in the sample [29]. The
Debye-Waller factor in this context is defined as the mean squared displacement of an
atom j, ⟨u2

j ⟩, and can be calculated as

⟨u2
j ⟩ = 3ℏ2

2mjkBΘD
·
(

1
4

+ T

ΘD

)
· 2

3
, (5.2)
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where m is the atomic mass, T is the temperature, kB is the Boltzmann constant, and
ΘD is the Debye temperature [107]. This number is an input parameter in Listing 3.5
allowing the user to apply a potential smearing based on a given Debye-Waller factor.

The Debye-Waller smearing applies a homogenous smearing across the atomic poten-
tial. Chen et al. [29] modelled blurring as a Gaussian with three components: electron
scattering, atomic vibrations, and lens abberations. They proved that, for Co-Mo-S
atomic nanocrystals, the vibrational radius of individual atomic columns was hetero-
geneous and that the heterogeneity is due to the atomic vibrations. The vibrational
radius increases from the centre of a nanocrystal and towards the edge. In fact, the
amplitudes of the atomic vibrations alone exceed typical Debye-Waller factors and un-
fortunately comprimises the ability to determine the stoichiometry of many atomic
columns due to overlapping column potentials caused by the vibrations. Refer back to
Figure 1.5(a) and imagine that the atoms are displaced significantly in the horisontal
directions. Their conclusion points to speculation that the vibrations are largely due
to the electron beam supplying energy to the vibrations of the atomic system. Their
work highlights a proper treatment of the heterogeneity of the thermal vibrations in
atomic systems for proper exit wave reconstructions when the aim is to determine the
chemical composition of each atomic column.

The latter method to applying vibrations is already handled by abTEM, where a
trajectory file containing multiple configurations at each time step of a molecular dy-
namics (MD) simulation, for example, can be provided as input, instead of a single
atomic system. The molecular vibrations and exposure times for each image is larger
than the time it takes for a single high energy electron to traverse through the spec-
imen. Each electron effectively sees a frozen snapshot of the atomic configuration,
which differs to the snapshot seen by other electrons. The average image over all the
configurations can then be computed to include the vibrational blurring. This can also
be achieved by generating multiple configurations from simply perturbing the atoms
of some system multiple times from a Gaussian distribution. This would be a more
crude model but would provide atomic column smearing in the image nonetheless. Per-
turbing every atom based on the same Gaussian distribution will still only apply a
homogeneous smearing across the atomic system. See Figure 5.1(a) for an illustration
of the heterogeneous blurring that can occur from an MD simulation.

To take a step towards more realistic vibrations an alternative frozen phonon method
is proposed, named the “Local Environment Frozen Phonon” method. This method
is an attempt to address the findings of Chen et al. [29] and consists of extracting a
mean standard deviation of atomic positions dependent on their coordination number
and chemical element from a series of MD simulations. These values are then used to
perturb atoms correctly by a simple translation of the positions based on a Gaussian
tailored for each coordination number. This is the frozen phonon approximation, but
with vibrational amplitudes depending on the local structure obtained from MD sim-
ulations. This includes heterogeneous thermal vibrational effects into the simulated
images at a low computational cost. This is especially useful when MD simulations
require ab-initio methods, such as density functional theory (DFT), which is the case
for MoS2. MoS2 will therefore be the focus of this chapter.

A MD simulation was carried out for the basic MoS2 system shown in Figure 5.1(a).
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A DFT calculator was set up using GPAW, a projector-augmented wave based DFT
code [108], in LCAO mode, with a double zeta polarised basis set, and the PBE func-
tional. The structure was first relaxed using the QuasiNewton method. The dynamics
were computed via the NVTBerendsen algorithm with a time step of 0.5 fs and a time
constant of 250 fs. The NVTBerendsen algorithm provides reliable constant tempera-
tures for the system through a coupling with a thermal bath that has a well defined
constant temperature [109]. The structures are restricted to zero linear and angular
momentum. The structure is allowed to thermalise to 300 K from an initial excitation
of 500 K.

(a)

(b)

(c) (d)

Figure 5.1: (a) An illustration of a MoS2 nanoflake with the Mo total coordination numbers
and the heterogeneous effects of atomic column blurring due to thermal vibration produced
by an MD simulation. The vibrational amplitudes from an MD simulation at 300 K sorted by
the total coordination for (b) Mo and (c) S atoms. (d) The resulting images from averaging
images from the MD simulation and the local environment frozen phonon method.

The atomic configuration is stored each time step. The atoms are indexed, which
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makes it simple to extract the standard deviation of the positions, i.e the vibrational
amplitude, of each atom in the system along with a standard error. The atoms are
then sorted by their total coordination number. In this case there are two chemical ele-
ments, Mo and S. See Figure 5.1(b) and Figure 5.1(c) for the distribution of vibrational
amplitudes for Mo and S, respectively, based on their total coordination number. It is
clear, especially for S atoms, that the lower the coordination number, the higher the
vibrational amplitudes. In all cases the amplitudes at this temperature are very small.
The atoms of a given system can be perturbed a number of times by a unique Gaussian
defined for each chemical element and coordination number. Doing so, displaces the
lower coordinated atoms more than the higher coordinated atoms. The results of the
averaging of the exit wave, image wave (exit wave + CTF), and the image (image wave
+ noise) are shown in Figure 5.1(d) (Refer to Figure 1.1 for the definitions of each),
where the vibrations are seemingly negligible in all cases.

To enhance the study, the MD simulation was repeated for a temperature of 1200
K, in an attempt to increase the effects for educational purposes, and as a possible
approximation to the local heating by the electron beam [29]. The vibrational ampli-
tudes for S atoms in Figure 5.2(a) are evidently much larger. The smearing affect due
to the averaging is also much more noticeable in Figure 5.2(b). Here it is shown that
the local environment frozen phonon method is capturing the same spatial distribution
of vibrational smearing as the MD simulation.

The S atoms along the edge vibrate more parallel to the edge of the MoS2 nanoflake
in the MD simulation compared to the local environment frozen phonon method. One
could argue that the local environment of the S atoms located along the edges differ
not only by coordination but also in their degrees of freedom, which is not captured
by the local environment frozen phonon method. A separate treatment was performed
on these edge atoms to determine in which direction these atoms vibrate most with
respect to the edge of the system. For each S atom along the edge a y-axis is defined
perpendicular to, and an x-axis parallel to, the edge of the MoS2 nanoflake, using the
nearest Mo atom. Each S atom’s axis is then rotated by an angle θ and translated by a
distance d to align all S edge atoms on a global axis. This is depicted in Figure 5.3(a).
Vibrations on the global axis revealed an almost 50% larger vibrational amplitude
parallel to the edge of the MoS2 flake than perpendicular to (see Figure 5.3(b)). This
is taken into account in the additional “Directional Edge Frozen Phonon” method,
which in Figure 5.2(b), shows that the directionality of the vibrations along the edge
are captured.

The vibrational smearing in Figure 5.2(b) show that the effects are most prominent
in the exit wave compared to the image. The applied noise seems to drown out the
blurring from the vibrations. Modelling the heterogeneous vibrations in the simulated
training data may not affect on the atomic column segmentation task of MoS2 presented
in Section 4.3. In contrast, including heterogeneous vibration could have a significant
affect on the exit wave reconstruction by neural networks from Section 4.1 and better
prepare neural networks for reconstructing the exit wave of experimental images.

In summary the functions presented in Table 5.1 allow for the extraction of vibra-
tional amplitudes from a few MD simulations and then the application of vibrational
amplitudes to hundreds/thousands of atomic structures at relatively low computational
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(a)

(b)

Figure 5.2: (a) The vibrational amplitudes from an MD simulation at 1200 K sorted by the
total coordination for S atoms. (b) Averaged intensity (norm squared) of the exit wave, image
wave, and image formed from the local environment frozen phonon, directional edge frozen
phonon, and the MD systems. The local environment method captures the same heterogeneity
of vibrational smearing, and the directional edge method captures the directional vibration of
the edge atoms. The vibrational effects are minimal in the final image when noise is applied,
but prominent in the exit wave.
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(a) (b)

Figure 5.3: An illustration of the “Directional Edge Frozen Phonon” method. (a) S atoms
located along the edge are treated separately by defining an axis for each atom where the
y-axis points to the nearest Mo atom. By a rotation and translation all the S atoms along the
edge are fixed to a global axis. (b) the vibrational amplitude distribution on the global axis
described in (a). This reveals that the S atoms have a larger vibrational amplitude along the
edge of the MoS2 nanoflake.

cost. The vibrations are coordination number and chemical element dependent and will
therefore mimic the vibrational heterogeneity highlighted by Chen et al [29]. The MD
vibrations are only thermal vibrations and do not include well described beam induced
effects, however the vibrations can easily be tuned by any factor when applied. Doing
so may provide more realistic training data and improve performance on experimental
data, especially when performing exit wave reconstructions.
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Table 5.1: Functions for the Local Environment and Directional Edge
Frozen Phonon methods.

Extraction
Functions Descriptions
get_vibrational_amplitudes() Takes a trajectory file with multiple configurations

and will return a Frozendict of the mean of the
standard deviation of positions in each Cartesian
direction for each unique coordination number of an
element to a neighbouring element.

Return -
va: Frozendict of the vibrational amplitudes sorted
by coordination number

get_edge_vibrations() Takes a trajectory file with multiple configurations
and handles edge effects. Edge atoms are identified
by lowest coordination number, eg. an S with 1 Mo
neighbour. All edge atoms are mapped onto a global
(x,y)-axis where a mean and standard deviation of
the positions are extracted.

Return -
sigma_xyz: Mean over all trajectory steps of the
standard deviation of atomic positions of all edge
atoms

mu_xyz: Mean over all trajectory steps of the average
atomic positions of all edge atoms

Application
Functions Descriptions
perturb_atoms() Takes the Frozendict from

get_vibrational_amplitudes and an atomic sys-
tem and will return atoms perturbed by a Gaussian
distribution for each coordination number and
chemical element based on the given vibrational
amplitudes.

Return -
patoms: Atoms The perturbed atoms configuration

perturb_edge_atoms() Takes the mean and standard deviation from
get_edge_vibrations and perturbs the edge atoms
using the standard deviation and mean in cartesian
directions. The edge atoms will be mapped into the
global coordinate system, before perturbing, and
then mapped back.

Return -
patoms: Atoms The perturbed atoms configuration
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CHAPTER 6
Software: Graphical User
Interface with Dragonfly

Dragonfly is a general image analysis software provided by Object Research Systems1.
The developers are experts in computer vision and various techniques to analyse images,
including deep learning. Dragonfly has an easy to use Python development module to
develop user-specific tools. This has been used to implement the instance property
tracking described in Figure 3.11 as a menu item that can be easily selected and
executed by the user on any stack of binary segmentations. Refer to Dragonfly’s
tutorial page on how to load images, train neural networks or load trained neural
networks (for example the neural network saved at the end of Listing 3.8), and apply
them to obtain the segmentation mask2. Menu items have been implemented to extract
information from multiple instances (see Figure 3.11) that allows easy analysis of many
frames of data.

6.1 Implementation of Tools as Menu Items
This section will present the menu items that have been implemented with a descrip-
tion of each supported by a screenshot directly from the Dragonfly interface. As an
example dataset, hexagonal Boron Nitride (hBN) supported Au nanoparticles have
been imaged along the [111] zone axis. The images are large 4K resolution images
of multiple nanoparticles. Dragonfly refers to an image as a Channel-object, which
can contain all the frames in the dataset. The segmentation of an image is called a
ROI-object when it is a binary segmentation and a multiROI-object when the number
of classes are beyond binary. These names will be adopted for the remainder of this
chapter, as menu items are created for specific objects in the program.

Menu Item 1: Label by 2+1D Connectivity
This menu item is available for a ROI-object in Dragonfly. An example of a binary

segmentation of the hBN supported Au nanoparticles is presented in Figure 6.1. The
ROI-object contains the binary segmentation of every frame provided. Selecting the
“Label by 2+1D Connectivity” menu item will prompt the user to specify a minimum

1Dragonfly 2020.2 [Computer software]. Object Research Systems (ORS) Inc, Montreal, Canada,
2020; software available at http://www.theobjects.com/dragonfly.

2Dragonfly tutorials: https://www.theobjects.com/dragonfly/tutorials.html.
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separation in unit nm. This will serve two purposes. Firstly, when the landscape
for the watershed algorithm is more complex than the representation in Figure 3.10
there may be an overwhelming number of peaks or valleys. The minimum separation
will force the valleys to be separated by at least that given value, which is especially
useful for when there are overlapping elements in the image that should be separated.
Secondly, segmentations are not always perfect and small incorrectly segmented areas
may appear due to noise, amongst other artefacts, in the image. The square of the
minimum separation will serve as a minimum area for each ROI instance and remove
every ROI instance that is smaller. This is done for every frame in the ROI-object, where
the ROI instance tracking presented in Figure 3.11 is executed to connect the instances
across all frames. The output is a multiROI-object in Dragonfly, which contains the
now multi-valued segmentation of every frame, where the values for each instance are
matched across frames. This has been named “2+1D Connectivity”, since each image is
2-Dimensional where instances are separated and then connected along the additional
time axis i.e. across all the frames.

Figure 6.1: A screenshot of the “Label by 2+1D Connectivity”-menu item, which is available
for binary segmentations and will separate regions into individual instances and connect the
instances across all frames provided. The only input required is a minimum distance between
instances in unit nm.

The result of selecting the “Label by 2+1D Connectivity”-menu item is presented in
Figure 6.2, which proves that each nanoparticle is separated into individual instances
and connected across frames. The lower right even presents two overlapping nanopar-
ticles that were divided into two separate ROI instances that are consistently tracked
across frames. It should also be noted that this can be done for any number of frames
and any number of instances or, in this case nanoparticles, present in each frame, which
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Figure 6.2: Result of the “Label by 2+1D Connectivity”-menu item. Every ROI-instance, in
this case nanoparticle, is defined frame by frame and connected across frames. Even overlap-
ping nanoparticles were treated. This is a real-life example of the illustration in Figure 3.11.

highlights the applicability to large scale data analysis.

Menu Item 2 & 3: Get FFT along time axis & Get ROI properties
Now that all the ROI instances are tracked, data can be extracted for each instance

across all the frames. The user can select an instance or nanoparticle from the multiROI-
object and generate a separate ROI-object for that instance. Both menu items are shown
in Figure 6.3 for a selected nanoparticle (or ROI-object).

The first is a menu item to extract the Fourier transform of the given ROI-object across
all frames. This utilises the ROI-object’s segmentation to crop the instance out of the
image, apply a Gaussian apodisation to smoothen the boundary edges, and compute
the Fourier transform. The Fourier transform is a useful tool to identify orientation
or crystallographic properties of the region, for example a nanoparticle. This menu
item allows for a Fourier space visualisation of the entire nanoparticle isolated from
any surroundings, even if the nanoparticle is in motion, as long as the displacement is
not too large between consecutive frames. The extracted Fourier transforms are stored
as a separate Channel-object that can be viewed side-by-side and analysed separately.

The second data extraction menu item currently returns the area of the instance
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across frames and provides a plot. This can be selected for multiple ROI-objects or
multiple nanoparticles to form a plot of the area of each nanoparticle against time
to study morphological changes due to environmental conditions, such as temperature
changes, gas concentration changes, or varying electron beam doses.

Figure 6.3: A screenshot presenting the two data extraction menu items implemented in
Dragonfly. “Get FFT along time axis” extracts the Fourier transform of the isolated region
for every frame and is stored as a separate Channel-object. “Get ROI properties” currently
extracts the area of multiple selected ROI-instances across all frames and plots it.

This concludes the presentation of the tools available as menu items in Dragonfly.
To emphasise the value of the menu items, the following section will present real life
examples, applying the tools to extract information.

6.2 Real Life Examples of the Tools
The main goal of the tools is to open the door to large-scale data analysis in HR-TEM.
This means the analysis of many regions of interest in many frames of data. The tools
should alleviate tedious manual labour. To showcase the Fourier transform tracking,
CeO2 supported Au nanoparticles were imaged in vacuum at room temperature with
a doserate of 35 x 103 e−

/Å2
s and exposure time of 0.4 s per frame. A neural network

trained using the pipeline from Chapter 3 was loaded into Dragonfly to segment all
the nanoparticles in the image. The “Label by 2+1D Connectivity”-menu item was
selected to separate all the nanoparticles and a single nanoparticle was chosen because
it shifted its position throughout the frames. The Fourier transform of the nanoparticle
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was extracted for every frame. The nanoparticle in mention and its Fourier transform
is presented in

Figure 6.4: An example of extracting the local Fourier transform of a nanoparticle, despite
its motion in real space. This is done using the “get FFT along time axis”-menu item presents
in Figure 6.3. The dashed lines emphasise the motion of the nanoparticle across frames.

Figure 6.4, where the displacement between frames is emphasised by the dashed lines.
Despite this displacement the nanoparticle is tracked across frames and a local Fourier
transform can be extracted.

The Fourier transforms can be extracted from Dragonfly as image files of various
formats and analysed to extract crystallographic information. A closer look at the
selected nanoparticle and its corresponding local Fourier transform is presented in
Figure 6.6. It is evident both in real space and Fourier space that there is a twin
boundary in the nanoparticle. Two regions are identified that are labelled region 1 and
2.

The Fourier transform can help quantify out-of-plane rotations or morphological
changes, that are less evident in the real space image. Tracking the intensity of the
peaks can be related to out-of-plane rotations, phase changes, and other morphological
changes [82], as well as aberration affects on local regions of the image that reduce the
contrast. Each Fourier transform is normalised so that the intensities can be thought
of as a fraction of the maximum intensity present in the Fourier transform. The mean
intensity within a 30 x 30 pixel square around each peak is used. In this case the
{200} and {111} peaks of region 2 in the nanoparticle are tracked and show an inverse
relationship in Figure 6.5(b). The {200} intensity (red) dips as the {111} intensity
(green) peaks. This relationship can be due to an aberration effect, morphological
change, or out of plane rotation, reducing the visible periodicity of the {200} planes.
The peak corresponding to the planes associated with the twin boundary interface is
also tracked (blue). The intensity of the blue peak can quantify the relative contrast
shifts between region 1 and 2, which seem to follow the same trend as the {200} intensity
of region 2. The contrast shift is highlighted by the yellow marked region of frame 22
and frame 23, where there is a stark contrast difference between the two sides of the
twin boundary of frame 22. The effects here are speculated to be beam related due to



82 6 Software: Graphical User Interface with Dragonfly

the conditions of the experiment.
Tracking the angle of a peak can be related to in-plane rotations. The angle of the

{200} peak of region 2 shows minor in-plane rotations. These rotations are most sig-
nificant between frames where the nanoparticle exhibits a large displacement, such as
between frame 22 and 23. These frames are also where there are the most significant
changes in the intensity of the Fourier peaks. This suggests that the nanoparticle ex-
hibits some morphological changes or motion blurring during displacement and relaxes
again to a similar state.

(a)

(b) (c)

Figure 6.5: Image crops of the nanoparticle in motion for selected frames are shown. (a)
Presents real space images (top) and corresponding local Fourier transforms extracted using
the segmentation (bottom). Colour coded crystal planes are marked in both real space and
Fourier space. The nanoparticle is separated into region 1 and 2 on either side of the twin
boundary. (b) The intensities of {200} (red) and {111} (green) peaks for region 2, reveal a loss
in the visible periodicity of {200} planes. The reduced {200} visibility correspond with a con-
trast difference between region 1 and 2, quantifiable by planes in the twin boundary direction
(blue). (c) The angle of rotation of the region 2 {200} peak that shows very minor in plane
rotations of the nanoparticle. The most significant rotations occurred near a displacement of
the nanoparticle, such as between frame 22 and 23.



6.2 Real Life Examples of the Tools 83

The above analysis serves as an example of tracking dynamics in the orientation and
morphology of a nanoparticle. The “get FFT along time axis”-menu item assists users
in extracting high resolution local Fourier transforms by providing it with the click
of a button. This tool is robust to motion of the nanoparticle allowing for studies to
correlate motion of nanoparticles and structural changes at ease.

Another experiment was conducted with the hBN supported Au nanoparticles intro-
duced in Section 6.1, which consisted of imaging the many nanoparticles at a constant
temperature of 1100 ◦C, a beam energy of 300 keV. In this experiment many of the
nanoparticles vaporised and the experiment was to determine whether the vaporisation
was due to the temperature supplied by the stage or local heating by the electron beam.
To achieve this the electron beam was left on for some time and switched off for a pe-
riod. This was repeated twice. The electron dose rate was 4849 e−

/Å2
s, 4921 e−

/Å2
s,

and 4917 e−
/Å2

s during the first, second, and third active beam intervals, respectively.
A neural network was trained using Dragonfly’s own manual labelling and training
tools to achieve a segmentation of every frame in the dataset3. Selecting the “Label by
2+1D Connectivity”-menu item separates and tracks every nanoparticle as shown in
Figure 6.2. Multiple ROI-objects, each containing a nanoparticle, are highlighted and
the “get ROI properties”-menu item is selected resulting in the area versus time of each
highlighted nanoparticle shown in Figure 6.6. From the result it can be deduced that
in this experiment the temperature supplied by the stage is the main factor causing
the vaporisation of the nanoparticle. This is seen by the constant slope in the area of a
nanoparticle seen across frames with no electron beam incident on the sample. Again
it is emphasised that the plot in Figure 6.6 was obtainable with a single click. The
large-scale tracking of properties for statistically significant analyses is achievable with
these menu items and each menu item is easily expandable for other properties than
what is shown here.

In this chapter, the value of the implemented tools has been highlighted with a couple
of model experiments. With a single click the user can extract and quantify dynamic
properties of and region of interest in the images as a function of time, facilitating
large-scale data analysis for HR-TEM.

3The workflow from Chapter 3 does not include hBN supported Au nanoparticle in the [111] zone
axis. Only 4 manually labelled frames were required to train a sufficient neural network in Dragonfly.



84 6 Software: Graphical User Interface with Dragonfly

Figure 6.6: An example presenting the “get ROI properties”-menu item which allows for
the area of multiple nanoparticles to be tracked. In this experiment the electron beam was
switched on and off for varying periods to deduce whether the vaporisation of the Au nanopar-
ticle were due to temperature supplied by the stage or local heating by the electron beam.
Due to the constant slope in the area of each nanoparticle across periods with the electron
beam switched off, it can be concluded that the dominating factor here is the temperature
from the stage.



CHAPTER 7
Conclusion

Modern electron microscopes are capable of producing rapid image sequences capturing
the dynamic atomic scale nature of materials. These image sequences contain gigabytes
or terabytes of data that are typically analysed manually by an electron microscopist by,
for example, determining the atomic columns present in the image frame by frame. This
is a cumbersome task and methods to alleviate present difficulties has been introduced
in the context of HR-TEM.

This work has leveraged the power of deep learning neural networks to provide tools
for microscopists to analyse their data. Neural networks are data driven and require
large amounts of data to sufficiently learn a given task and that data must be suffi-
ciently diverse to avoid any bias and force the neural network to generalise to other
data sets. A software pipeline has been implemented to allow users to generate thou-
sands of varied atomic systems of CeO2 supported metallic nanoparticles and 2H phase
MoS2 monolayer nanoflakes. From the thousands of atomic systems the user can then
generate thousands of HR-TEM images with assorted microscope conditions. The
assortment of the HR-TEM images is very much controlled by the user via the input
parameters file from Table 3.2, where the user should specify, amongst other things, the
range of the CTF and other microscope-related parameters. The user can toggle the
presence of noise and the presence of an MTF, which would simulate images from dif-
ferent electron detectors. The software pipeline provides a large degree of flexibility for
generating training and validation data sets, along with training neural networks. To
add to this flexibility, multiple neural network architectures were implemented for the
user to benchmark. The neural network architectures include: The U-net, U-net++,
and MSD-net all displayed in Figure 3.8. The data generation and neural network
training segment of the pipeline is executable with just 4 lines of commands in a Unix
terminal summarised in Listing 3.8. The software pipeline is compatible with HPC
clusters which allow for a neural network to be prepared within a day, depending on
the set up.

Each simulated image is paired with a ground truth label that defines the task that
the network should solve and this is also selected by the user. Three labels were defined
in this work: Mask labels, Disk labels, and Exitwave labels. The user does not require
any knowledge of specific loss or activation functions introduced in Chapter 2, as the
neural network and training procedure is automatically initialised based on the type
of label specified by the user in the input parameters file.

An example was made of training neural networks with Mask labels for CeO2 sup-
ported Au nanoparticle to perform binary segmentations of the Au nanoparticles, sep-
arating them from their surroundings in the image. These segmentations can be per-
formed on large images with many nanoparticles present to highlight all the regions of
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interest. The binary segmentation map can be separated via a watershed algorithm,
producing a multi-valued map separating every instance of a nanoparticle in the image.
These instances are compared across frames and tagged so that every instance is con-
nected throughout all the frames. This concept is visualised in Figure 3.11. Tracking
the instances across all frames facilitated large-scale data analysis, since properties of
each instance can be contained across frames and extracted. This was exemplified in
Dragonfly, where high-resolution Fourier transforms and properties of selected nanopar-
ticles can be extracted with the click of a button. This work showed that the Fourier
transforms were of high enough resolution to easily distinguish between crystal planes
corresponding to two different regions of a twinned nanoparticle. Tracking these peaks
allowed for a quantification of various dynamic properties. This work also showed that
the area of many nanoparticles could be tracked across many frames to determine the
cause of vaporisation, whether it be the temperature supplied by the stage or beam
induced local heating.

It is important to understand the limitations of neural networks before designing
experiments that should be analysed by them. The ability of the U-net and MSD-net
in performing mask segmentations at low signal to noise ratio was gauged as a func-
tion of frame dose. A lower limit for a full reliable neural network segmentation of a
CeO2 supported Au nanoparticle was identified at 200 e−

/Å2. The MSD-net presented
an enhanced ability to differentiate between signal and noise and perform reasonable
segmentations below the lower limit of the training data, which shows a strong gener-
alisability. The MSD-net was able to segment regions of the nanoparticle down to 30
e−
/Å2, which is useful for object detection and tracking purposes. Close attention to

modelling the MTF parameters was highlighted to optimise the segmentations by the
neural networks in all frame dose regimes. This work provides the user of the software
pipeline knowledge of the extent to which they can limit the beam damage and beam
effects in the sample and still extract necessary information from the images.

Exitwave labels paired with images of MoS2 nanoflakes (2H phase) can train neural
networks to perform exit wave reconstructions with smaller focal series (down to 3
images) that are comparable to traditional algorithms. The neural networks, unlike
traditional algorithms, did not require detailed knowledge of the CTF, but were unable
to reconstruct the z-axis dependency of the atomic columns, which ultimately meant
that 1S atomic columns that exist in the upper or low sulphur layer along the optical (z-
)axis could not be differentiated. The initial desire was for the neural network to learn
the deconvolution from Eq. (1.29) and perform a general regression between any given
focal series and the corresponding exit wave. The neural networks, however performed
worse when going from MoS2 nanoflakes, to graphene supported MoS2 nanoflakes,
to a data set of thousands of 2D materials from the C2DB. It turned out that the
the neural networks performed best when trained on data sets of a single type of
atomic system, with minimal complexity, which reveals that the networks are utilising
information of the given atomic system. These neural networks provide a tool to
provide an approximate description of the chemical composition and 3-Dimensional
positions of the atomic columns during image acquisition to help determine significant
areas of interest.

To tackle a similar problem as the exit wave reconstructions, Disk labels were paired
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with images of MoS2 nanoflakes (2H phase), to perform a multi-class segmentation
of atomic columns, belong to a 1Mo, 2S, or 1S class. Despite the complexity of the
intensities present in the focal series images of MoS2 nanoflakes, the U-net, U-net++,
and MSD-net were all able to score a perfect atomic F1-Score of 1.0 for over 80% a data
set of 500 simulated focal series over a large range of microscope parameters. The neural
networks preferred a focal series of at least 3 images, as for the exit wave reconstruction.
The performance of each network was gauged as a function of the number of trainable
parameters in the neural network and as a function of data points in the data set. This
analysis proved there was no need for more than 100 data points in the training data set
and no more than 106 trainable parameters. The neural networks could, however not
generalise to defocus values outside the training set. Neural networks show a promising
ability to locate and classify many atomic columns in order to track defect formation,
dynamics of atomic columns, generate strain maps and more.

Deep learning is paving its way to becoming a standard tool for large-scale analysis,
especially in cases that are exceedingly difficult for human interpreters. This work has
presented a baseline for the possibilities and also limitations of these tools.

7.1 Outlook
Research is an endless quest for knowledge and it goes without saying that there are
many routes to pursue to extend the work of this thesis. Similarly, any good software is
subject to updates that add incremental improvements ideally based on user requests.
The following will present some of the possible improvements to the software pipeline
and what could be done to extend research possibilities with these tools.

The deep learning models implemented in this work are only able to perform a
single task, ideally for a single atomic system. Any case where an attempt was made
to perform a single task over a number of atomic systems showed increased signs of
failure. Chapter 3 presented a software pipeline where the first step was to generate
a diverse data set of a given atomic system. An improvement at this stage would be
to expand the number of atomic systems available. Such an improvement was already
exemplified in the exit wave reconstruction study made in Section 4.1, where the MoS2
nanoflake construction was extended to include graphene substrates. The Python script
in Listing 3.5 can be improved to generate any MX2 atomic system, where the user
can specify the M and X chemical species. Listing 3.3, showed that any metallic
nanoparticle chemical species could be provided by the user, but this could be further
extended to allow for various substrates to be specified by the user. The overall idea
is to provide more atomic systems to extend the applicability of the software pipeline
and it is achievable with relatively few lines of code, since the foundation is already
there.

The neural network training segment of the software pipeline can be further improved
by implementing more loss functions and optimisers, as several works show that this
can significantly improve performance [68]. It is convenient to define a default so that
users with less knowledge can run the entire pipeline, but providing optional flexibility
allows the more advanced user to tune the training process of the neural networks for
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an improved result. With time it may also be useful to provide more neural network
architectures, with recommended architectures for specific problems.

It would be interesting to fully implement the heterogeneous vibrational amplitudes
from Chapter 5 into the software pipeline and gauge the performance of the neural net-
work exit wave reconstructions from Section 4.1. Chen et al. [29] found that a realistic
model of the heterogeneous atomic vibrations was significant in properly interpreting
the chemical compositions of the atomic columns. Involving these vibrations in the
training data may improve neural network performance on experimental data.

Another issue in probing atom positions through exit wave reconstruction was the
presence of a substrate. This is a global issue and is usually tackled by Fourier filtering
the substrate out of the exit wave. What if a neural network was trained to reconstruct
the exit wave and perform the Fourier filtering, so that the substrate could automati-
cally be filtered out. This could be achieve in two ways. The first way could be training
the neural network on images with a substrate present paired with exit waves of the
same system system without the substrate. This would treat the substrate as another
degree of noise and train the neural network to filter it out automatically. The other
way could be to do the same input to output pairing as the former, but Fourier filter
the substrate out of the image to assist the network in neglecting it as noise. These
methods were already investigated and showed promising results. If the neural network
can perform the filtering and provide the exit wave, this would serve as an even more
valuable tool for microscopists.

A next step in the atomic column classification in Section 4.3, could be to add
an extra class differentiating between upper and lower layer 1S columns, to see if this
segmentation can probe the optical (z-)axis positions of the 1S columns. Doing so would
assist defect formation studies in determining the electron beam related threshold
energies for knocking out S atoms above or below the monolayer sample.

A fact of reality is that any atomic column related analysis requires rather ideal con-
ditions. The resolution and interpretability of the image must meet a certain standard
and the atomic system has to be well aligned along a zone axis. These conditions
are not always met and microscopists typically search through large data sets seeking
images with these conditions for the analysis. Groschner et al. [14] presented a clas-
sification model, that classified nanoparticles based on a feature vector containing the
mean and standard deviation of both the real and Fourier space image of the nanopar-
ticle. Hand labelled feature vectors were used to train a random forest classifier to
classify the nanoparticles into several classes including whether the nanoparticle was
well aligned along a zone axis or slightly tilted displaying planar fringes rather than
atomic columns. A more sophisticated model such as a neural network may be able
to perform these classification based on only the Fourier transform and be equipped
together with the large-scale Fourier transform extraction tool presented in Chapter 6.
The many Fourier transforms can be extracted and classified with a click, identifying
frames where nanoparticles are suitable for atomic column analysis. A simulated data
set consisting of nanoparticles aligned along a zone axis and nanoparticles tilted off zone
axis can be constructed and labelled in order to train a sufficient model. A prototype
was constructed and proved to be applicable to Fourier transforms from experimental
images.
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Similar to the study made in determining the frame dose limitations of the neural
network segmentation, the limitations to various CTF parameters could also be inves-
tigated. Experiments could be made where a frame is assigned as the ground truth
frame and various CTF parameters could be controlled to identify when the neural
networks lose sight of all atomic columns for example.

As a final note, it would be beneficial to implement the entire software pipeline into
a graphical user interface software, such as Dragonfly. This would remove any need
for knowledge in running scripts in a Unix command line and Python programming.
Simulating the data sets and preparing the neural networks would all be available at
the click of a button, similar to the large-scale analysis tools implemented in Dragonfly
from Chapter 6. For live analysis tools the Gatan Microscopy Suite1 would be a perfect
platform to implement, for example, the neural network exit wave reconstructions.
Making these tools highly accessible will provide a significant boost in the extraction
and analysis of atomic scale data in high-resolution transmission electron microscopy.

1The industry standard software for (scanning) transmission electron microscope ((S)TEM) ex-
perimental control and analysis: https://www.gatan.com/products/tem-analysis/digitalmicrograph-
software.
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CHAPTER 8
Publications

The proceeding pages are reprints of the publications associated with this work. This
chapter comes at the end since it would obstruct the general flow of the thesis to be
placed in between. A summary of the main highlights of each publication is made
in Chapter 4, which connects the work produced in each publication to the thesis
in a more natural manner. The summary, however, neglected some specific details
and discussions present in each publication, and so the reader is urged to read these
publications as part of this thesis. All of the information provided by the thesis,
provides an extensive insight into the work behind each publication, so that the reader
can focus on the outcomes and conclusions.

Thank you for reading.

Matthew Helmi Leth Larsen
March 2023
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A B S T R A C T

Reconstruction of the exit wave function is an important route to interpreting high-resolution transmission
electron microscopy (HRTEM) images. Here we demonstrate that convolutional neural networks can be used to
reconstruct the exit wave from a short focal series of HRTEM images, with a fidelity comparable to conventional
exit wave reconstruction. We use a fully convolutional neural network based on the U-Net architecture, and
demonstrate that we can train it on simulated exit waves and simulated HRTEM images of graphene-supported
molybdenum disulphide (an industrial desulfurization catalyst). We then apply the trained network to analyse
experimentally obtained images from similar samples, and obtain exit waves that clearly show the atomically
resolved structure of both the MoS2 nanoparticles and the graphene support. We also show that it is possible to
successfully train the neural networks to reconstruct exit waves for 3400 different two-dimensional materials
taken from the Computational 2D Materials Database of known and proposed two-dimensional materials.

1. Introduction

Machine learning has become a powerful tool for analysing images.
In fact, machine learning is a nascent tool in electron microscopy that
is envisioned to have a large potential for quantitative image analysis
[1,2]. In electron microscopy, applications of machine learning have
up to now included segmentation of medical images [3], grain and
phase identification [4–6], noise filtering [7,8] and in-plane location of
atoms [9–11]. Moreover, Ede et al. showed recently that the imaginary
part of the exit wave function can be reconstructed from the real part
using a convolutional neural network [12] and Meyer showed that off-
axis holograms, where phase information is recorded directly into the
image, can be reconstructed using neural networks [13]. In this work
we suggest that neural networks could potentially solve the classical
phase problem and thus retrieve the entire electron wave function
exiting the specimen in a transmission electron microscopy experiment.

Aberration-corrected high-resolution transmission electron micro-
scopy (HRTEM) is one of the important experimental techniques to
study the structure of materials at the atomic scale. The maximal
amount of information about the sample is present in the exit wave,

∗ Corresponding author.
E-mail address: schiotz@fysik.dtu.dk (J. Schiøtz).

i.e. the wavefunction of the electrons exiting the sample. As the image
is formed, some of this information is blurred or lost, both due to
aberration in the lenses, and because the camera detects the intensity
of the wave, not its phase.

It is well established that the full exit wave can be reconstructed
from a focal series of images [14–17]. A series of typically around 20–
50 images with varying defocus is used to numerically reconstruct the
most likely wave function of the electron beam as it exits the sample.
This can then be used to further reconstruct information about the
chemical composition and 3D structure of the sample [18–20]. For
beam-sensitive samples [21], exit wave reconstruction has the advan-
tage of being averaging in nature such that information from many
images with very low signal-to-noise ratio is combined in a single exit
wave image of superior signal-to-noise ratio [20]. Several numerical
algorithms are available for reconstructing the exit wave [15–17].

Here we examine a Convolutional Neural Network (CNN) as an
alternative way to reconstruct the exit wave. This reconstruction is
possible from a low number of HRTEM images, and with the advan-
tage that the detailed knowledge of the aberration parameters of the

https://doi.org/10.1016/j.ultramic.2022.113641
Received 27 December 2021; Received in revised form 23 September 2022; Accepted 30 October 2022
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microscope is not needed. We envision that this can be developed
into a tool for on-the-fly exit wave reconstruction while taking data
on the microscope, perhaps supplemented with more traditional exit
wave reconstruction as post processing. In the present case, the images
were convoluted with the effects of defocus, first order astigmatism,
coma, and blurring including focal spread. In this case a focal series of
two to three simulated HRTEM images were sufficient to reconstruct
the exit wave with sufficient accuracy in order to extract quantitative
information about the sample. In principle, it should be straightforward
to extend the present method to situations with low signal-to-noise ratio
and more unknown aberrations, in which case it is likely that a larger
focal series will be needed.

Recently, atomically thin two-dimensional (2D) materials have been
an active topic of research, with applications ranging from electronics
to energy storage and catalysis [22,23]. For example, molybdenum
disulphide (MoS2) is the preferred catalyst for removing sulphur from
crude oil destillates, and is one of the reasons that acid rain is no longer
one of the most pressing environmental problems [24]. In this paper,
we focus on exit wave reconstruction for the rapidly growing class of
2D materials, although the methods should be generally applicable.
We show that neural networks can reconstruct the exit wave both
when trained to a single material, and to a database of thousands of
proposed 2D materials. The reconstruction is of sufficient quality to
permit analysis of the image peaks associated with the atomic columns
e.g. by using Argand plots to identify the type and number of elements
in the material [19].

We also show that it is possible to train the neural network purely on
simulated data, and apply it successfully to experimental images of non-
trivial complexity, in this case a model catalyst based on molybdenum
disulphide.

2. Methods

The neural network architecture is a Unet [25] / FusionNet [3]
architecture, very close to the one used by Madsen et al. [9], with the
main modification that concatenation is used instead of elementwise
addition for the skip connections. A linear activation function is ap-
plied in the output layer, as exit wave reconstruction is a regression
problem rather than a classification/segmentation problem. Details of
the architecture can be found in the Supplementary Online Information
(SOI Sec. S1). The neural network is implemented and trained using
the Keras interface [26] to Tensorflow version 2.5 [27]. We train using
simulated images only. We computer-generate a training set and a
corresponding validation set of atomic structures, using the Atomic
Simulation Environment (ASE) [28].

Three data sets of increasing complexity were created. The first con-
sists of nanoparticles (nanoflakes) of molybdenum disulphide (MoS2).
In this data set we ignore that the nanoparticles will typically be
supported on another material in the microscope. Nevertheless this data
set will be relevant for e.g. edges of MoS2 films on a TEM grid, where
no support is visible in the region of interest.

The second dataset is MoS2 supported on a graphene substrate. A
nanoflake of graphene and one of MoS2 are generated in the computer,
and are placed with a random distance between 3.3 and 7.0 Å. One
quarter of the cases are placed with the lattice vectors of the two layers
in the same directions, another quarter with a rotation of 15◦, one
quarter with a rotation of 30◦, and the rest with a random rotation.
In both of these datasets 1000 samples are created for training, and
1000 for validation.

The third dataset consists of nanoflakes of materials from the Com-
putational 2D-materials Database (C2DB) [29] in the latest version
dated 2021/06/24. This version of the database contains 4056 known
or proposed 2D materials, but a significant number of these have
very complex structures where the quasi-2D material contains a large
number of atomic layers. We filtered the database so we only keep
structures with at most eight atoms in the unit cell. That left us with

3393 materials. Two samples are created of each material. Materials are
randomly assigned to the training or validation set with a probability
of 2:1, but in such a way that all materials containing the same set of
elements are assigned to the same set.

For all three datasets, vacancies and holes are introduced in the
systems. A vacancy is introduced by selecting a random atom and
removing it; holes are made by selecting a random atom and then
removing the entire atomic column. In the case of MoS2, if a sulphur
atom is selected then a vacancy would be removing just that atom,
whereas creating a hole would be removing an S2 dimer. If a molyb-
denum atom is selected there will be no difference. We select 5% of
the atoms for vacancy creation, then 5% for hole creation. All atomic
positions are then perturbed by adding a Gaussian with mean of 0 and
spread of 0.01 Å to all atomic positions. Finally, all samples are tilted
by a random angle up to 10◦ in a random direction.

Exit waves are then calculated using the multislice algorithm [30,
31], using the abTEM software [32]. The lateral sampling of the wave
function is 0.05 Å, and the slice thickness is 0.2 Å, see the SOI Sec. S2.
As a simple model of atomic vibrations, the potential of the atoms is
smeared by a Gaussian with
⟨
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⟩
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where 𝑚 is the atomic mass and 𝜃 is the Debye temperature [33,
supplementary online information]. As the same value must be used
for all atoms, we use the atomic mass of Sulphur. With 𝜃𝐷 = 580
K for bulk MoS2 [33], this gives a value of

⟨

𝑢2
⟩

= 0.0030Å2 at 300
K. Our own ab initio molecular dynamics simulations of MoS2 gives
a somewhat larger value, which is expected as molecular dynamics
ignores the quantization of the phonons which is important below the
Debye temperature. As an approximation, we also use this value of
⟨

𝑢2
⟩

for the materials in the C2DB. If the reconstructed exit wave is
to be used to gain information about the vibrational amplitudes of
different kinds of atoms, as is done in Ref. [20], the phonons need to be
modelled with a more sophisticated method, such as the frozen phonon
method, at a significant cost in computational burden (up to two orders
of magnitude).

After generating the exit waves, the abTEM software is used to
generate typically three images of the sample by applying a Contrast
Transfer Function (CTF), Poisson noise in the detector, and a Modu-
lation Transfer Function (MTF) introducing correlations in the noise.
This is described in detail elsewhere [9]. The parameters of the CTF
and the MTF (collectively referred to as the ‘‘microscope parameters’’)
are drawn from distributions given in Table 1. The three images have
the same microscopy parameters except that the defocus is changed by
5±0.1 nm between the images. If a different number of images is used,
the total variation in defocus remains at 10 nm. The minimal value of
the focal spread is sufficient to ensure that the CTF has gone to zero well
below the Nyquist frequency corresponding to the spatial resolution,
thus avoiding aliasing effects in the image simulations.

The expensive part of the image simulation is the multislice al-
gorithm calculating the interaction between the electron beam and
the sample. The action of the CTF and the MTF are computationally
cheap, and for that reason it is convenient to generate multiple images
of the same sample with varying microscope parameters. Depending
on the computational setup, it may be most convenient to generate
images on-the-fly during training, such that the network sees different
images of the same samples in each training epoch, or it is possible to
pre-generate and store the images. In this work we pre-generated ten
epochs of images for the training set, and one for the validation set. We
then cycled through the pre-generated epochs for the actual training,
which were up to 200 epochs (leading to each image being reused 20
times).

The neural network is trained using the mean square error (MSE) as
the loss function, with the RMSprop training algorithm as implemented
in Keras, and a learning rate of 5 × 10−4. We also tried using the
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Fig. 1. Reconstruction of the exit wave of a MoS2 nanoparticle by a network trained on unsupported MoS2 nanoparticles. The first two columns show the structure and the
three simulated HRTEM images. The third column shows the real and imaginary part of the actual wave function (the ground truth). The fourth column shows the exit wave
reconstructed by the neural network, and the last column shows the difference. The inset highlights the point with the largest deviation, an atom misplaced by 7 pm (0.6 pixels).
The Root Mean Square Error (RMSE) is 0.0062. The colourmap indicates the scale used for plotting the exit wave. The same scale is used in all the following figures.

Table 1
Microscope parameters. For each image series, a set of microscope pa-
rameters are drawn within the limits given here, except the acceleration
voltage which is kept constant. All distributions are uniform, except for
the dose which is exponential. The defocus of the first image is picked
so the defocus of all images are within the bound specified.
Parameter Lower bound Upper bound

Acceleration voltage 50 keV
Defocus (𝛥𝑓 ) −150 Å 150 Å
Spherical aberration (𝐶𝑠) −15 μm 15 μm
2-fold order astigmatism

Amplitude (𝐶12) 0 25 Å
Angle 0 2𝜋

Coma
Amplitude (𝐶21) 0 600 Å
Angle 0 2𝜋

Focal spread 5 Å 20 Å
Blur 0.5 Å 1.5 Å
Electron dose 102.5 Å−2 105.0 Å−2

Resolution 0.10 Å 0.11 Å
MTF 𝑐1 −0.6 0.2
MTF 𝑐2 0.1 0.2
MTF 𝑐3 0.6 1.8

Adam algorithm [34], and saw similar but slightly less stable results,
whereas Adam with the AMSgrad modification gave almost identical
results to RMSprop. Increasing the learning rate above 1 × 10−3 would
make the training unstable, and decreasing it below 5 × 10−4 was
detrimental to the learning. Training curves showing the loss function
of the training and validation set are shown in the SOI (Fig. S2). In
spite of the reuse of pre-generated images, the training curves do not
show signs of overfitting. We therefore did not use regularization in
the neural network. Training using mean absolute error (MAE) as loss
function lead to doubling the error in placement of the atomic columns
compared to MSE, and was therefore not used.

The sharp potential of the nucleus causes some amount of annular
structures to appear in the exit wave, in spite of the application of
Debye–Waller smearing. This fine structure contain little or no infor-
mation of value when analysing the exit waves. However, the neural
network will attempt to recover this structure, leading to an overall
small degradation of its ability to recover more important information
about the main peaks associated with the atomic columns. For simplic-
ity, we have filtered the exit waves prior to training by folding them
with a Gaussian with a spread of 15 pm, see SOI Fig. S4. This leads to
a significant improvement in the network performance, in particular
when it comes to extracting quantitative information from the peak
values.

3. Results and discussion

Fig. 1 shows the simplest situation, where the network is trained
and tested with unsupported MoS2 nanoparticles. The figure shows the
real and imaginary parts of the exit wave used to simulate the images
(the ‘‘ground truth’’), and the exit wave reconstructed by the neural
network (the ‘‘prediction’’). For thin samples, the interaction between
the electron wave and the sample mainly results in a phase shift of the
wave [20]. This is also the case for the data in the figure, where the
main part of the signal is in the imaginary part.

The difference plot in Fig. 1 shows that the network clearly re-
constructs the imaginary part of the exit wave both qualitatively and
quantitatively. We see that all peaks are reconstructed correctly, and
that the neural network both reconstructs the periodic lattice and the
deviations from periodicity such as vacancies, including single sulphur
vacancies where a single sulphur atom leaves a weaker peak than the
usual two atoms. The system shown in Fig. 1 was chosen as the median
of the validation set, half the systems in the validation set perform
worse, and half perform better. In the SOI Section S5 we show some of
the worst systems in the validation set, even the five percentile sample
is reconstructed quite well.

Fig. 2 shows the more complex situation, where the network is
trained on graphene-supported MoS2 nanoparticles. The way the train-
ing set is constructed does not guarantee that the full MoS2 nanoparticle
is overlapping with the support, so in this case the network needs to
learn to recognize both supported and unsupported MoS2.

The network is able to reconstruct both the part of the wave function
coming from the support and from the nanoparticle, in spite of the
signal from the support being much weaker than from the nanoparticle.
The network is even able to correctly find the carbon vacancies that
have been introduced in the support. It should be noted that if the
network is trained for a shorter time (50 epochs instead of 200), it
loses its ability to find the carbon atoms below the nanoparticle. The
largest deviation in the reconstructed exit wave comes from a slight
misplacement of the atoms in the MoS2 layer, the maximal error in the
placement of an atom is 9.7 pm, corresponding to a single pixel. This
system is again chosen as the median of the validation set.

Finally, the method was tested on the C2DB database of 3393
proposed two-dimensional materials [29]. Again we show the median
system, a nanoparticle of CoCl, (Fig. 3). We see how all atoms are
placed correctly, but the detailed shape of the peaks in the imaginary
part of the wave function is not well reproduced, the network predicts
somewhat smoother peaks. In addition, the network does not always
identify positions where single atoms are missing, leaving only one
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Fig. 2. Reconstruction of the exit wave of a MoS2 nanoparticle supported on graphene, by a network trained on graphene-supported MoS2 nanoparticles. The panels are the same
as in Fig. 1. It is seen that the network locates the atoms both in the MoS2 nanoparticle, and in the substrate. The worst spot in the prediction where an atom is misplaced by a
single pixel. It is worth noticing that the graphene support is also reconstructed correctly, including the vacancies in the graphene. The RMSE is 0.0122 and the colorbar is the
same as in Fig. 1.

Fig. 3. Reconstruction of the exit wave of a CoCl nanoparticle by a network trained on the C2DB (see text). The panels are the same as in Fig. 1. The network correctly determines
the positions of all the atoms (the maximal deviation is 8 pm or 0.77 pixel), but does not correctly reproduce the sharpness of the peaks in the wave function. The RMSE is
0.0263.

atom in the atomic column. Each position in the apparent hexagonal
lattice contain both a Co and a Cl atom, alternately oriented with the
Co or Cl on top, and staggered in the 𝑧 direction.

In order to obtain a more quantitative measure of the performance
of the networks, we have created histograms of the root-mean-square
error (RMSE) of all the images in the validation sets, see Fig. 4. In
general, the networks are better at reproducing the strong signal in the
imaginary part of the exit wave than the weaker real part. It is seen that
the performance of the network decreases somewhat as the complexity
of the data set is increased, going from unsupported MoS2 to supported
MoS2 to the C2DB dataset. It is not surprising that the network can be
trained for better performance on the simpler datasets. As a ‘‘baseline’’,
we also show the histogram produced from one of the datasets where
the predictions are compared with randomly chosen other exit waves
in the dataset (the Y-scramble method) rather than with the correct exit
wave. This shows the performance of a hypothetical network learning
the overall properties of exit waves but learning nothing about the
specific systems, i.e. it acts as a ‘‘null hypothesis’’.

It is also seen that the relative error is significantly larger for the
real part of the exit wave. This is because its magnitude is 3–4 times
smaller than the imaginary part (this can e.g. be seen by the position of
the peaks in the Argand plots in Fig. 5). It is only in the simplest case
(unsupported MoS2) that the network performs well on the real part.

We also test how networks trained on the C2DB dataset performs
on the supported MoS2 and vice versa. Unsurprisingly, the network
trained on supported MoS2 performs poorly on the C2DB dataset, as
the latter contains a far richer variety of structures. On the other hand,
the network trained on the C2DB generates a very broad distribution
of results when applied to the database of supported MoS2 structures
(the red curve in Fig. 4). Our interpretation is that this is because the
network correctly analyses the parts of the system where the MoS2
and graphene only overlap a little, but performs badly where they
overlap. While these systems are not inherently more complicated than
in the C2DB, they differ in a fundamental way, as there are two
different lattices in the system (the lattice of graphene and the one
of MoS2), whereas all systems in the C2DB training set only contain a
single (but often more complicated) crystal lattice. This illustrates the
importance of training the network on systems that are similar to the
final application.

The purpose of an exit wave reconstruction is usually to extract
quantitative information about the atomic columns. This is often done
in form of an Argand plot, where the peak values of the wave function
at the locations of the atoms are plotted in the complex plane [19].
It is therefore not enough that an exit wave reconstructed by neural
networks visually and statistically resemble the actual exit wave, it
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Fig. 4. Histograms of the root-mean-square error of the images in the validation sets for the various networks, showing their relative performance. Blue is the network trained and
tested on unsupported MoS2, orange is graphene supported MoS2, and green is the C2DB. It is seen that the performance of the network decreases somewhat as the complexity
of the data set is increased. The brown line is a baseline, this is the performance obtained if the network does not at all recognize the structure, obtained using the Y-scramble
method (see text). The red curve shows the supported MoS2 validation set with the network trained on the more diverse C2DB. As the samples contain two separate lattices, it is
outside the training set of the C2DB. Validating the C2DB test set with the network trained on MoS2 also gives bad results (purple curve), as the C2DB contains structures too far
from what is observed in MoS2.

Fig. 5. Argand plots of the complex value of the exit wave function at the local maxima of the change in wave function (|
|

𝛹exit − 1|
|

). Top row: unsupported MoS2 (the same system
as Fig. 1). Bottom row: supported MoS2 (same as Fig. 2). a+d: The imaginary part of the reconstructed wave function. The peaks are marked with blue plusses or green crosses,
depending on whether they correspond to a Mo or S atomic column position. b+e: The Argand plots of the reconstructed wave function. The separate points in the lower part of
the plot corresponds to columns with a single S atom instead of two. c+f: The similar Argand plots made from the ground truth exit wave function.

should also permit analysis in an Argand plot. This is shown in Fig. 5,
where we show Argand plots of both the unsupported and supported
nanoparticles from Figs. 1 and 2. For the unsupported nanoparticle, the
Argand plot is just able to distinguish between a single Mo atom (atomic
number 𝑍 = 42) and a sulphur dimer (sum of atomic numbers ∑

𝑍 =
32). The sulphur vacancies, where there is only a single sulphur atom
in the atomic column (𝑍 = 16) are clearly separated from the other
types. It is, however, not possible to determine if the missing atom was
above or below the plane of the Mo atoms, although that information
was present in the original wave function (shown as ‘‘ground truth’’,
where we see that the spots corresponding to single S atoms is split
into two nearby spots, as would be expected from atoms with different
𝑧 coordinate, see Chen et al. [19]).

For the case of supported MoS2 [Fig. 5(d–f)], the picture is less clear.
The Argand plot still clearly separates the sulphur vacancies from the
other atomic columns, but there is a larger spread on the column values,
and no longer a clear separation between columns containing two S
atoms or a single Mo atom. However, if the same analysis is done on
the ground truth exit waves (Fig. 5(f)), the situation is the same. This
is most likely due to interference from the substrate.

In the Argand plot, the position along the imaginary axis is largely
indicative of the total atomic number of the atomic column in the
weak phase limit [20]. The positions of the Argand points are also
affected by the 𝑧-height of the column relative to the plane of the
exit wave. This is mainly due to the propagation in free space that
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Fig. 6. Test of how the number of input images affects the performance. A single input image (blue curve) clearly does not give a good reconstruction of the exit wave. Already
with two images (orange curve), good performance is obtained, at least for the imaginary part. Three images (green) as used in the rest of this work gives an improvement,
whereas four images (red) gives only a marginal further improvement.

Fig. 7. Reconstruction of the exit wave of a AgCuTe2 nanoparticle by a network trained on the C2DB. To save space we do not show the real part of the exit wave, and only the
first and the last of the three images. The network does not recognize that the copper atoms are systematically slightly offset from the high-symmetry positions.

further change phase linearly with the atomic column height 𝑧 [35].
This effect is clearly not reproduced by the neural network, as it cannot
distinguish between single sulphur vacancies on the two sides of the
nanoparticle [ Fig. 5(b+c)]. It is possible that a network could be
trained to distinguish these features by including training data where
they are more prominent, i.e. a larger concentration of single sulphur
vacancies and perhaps samples with higher tilt angles, producing height
differences.

As a significant amount of information about the exit wave is
encoded in how the image changes with defocus, it is our working
hypothesis that a number of images are necessary for a neural network
to be able to reconstruct the exit wave. This is verified in Fig. 6, show-
ing the performance of networks trained on the same C2DB training
sets but with a different number of input images. It is seen that some
information about the exit wave can be gained from even a single
image, but a dramatic improvement is seen going to two input images.
A small further improvement is seen when increasing the number of
images to three or four, and we decided to use three images in the rest
of this work. In the simulations with two, three or four images, the
total range of defocus from the first to the last image were in each case
10 nm.

4. When the network fails

No neural network is perfect, and it is important to be aware of the
kind of failures that can occur when analysing an image. We illustrate
this with two kinds of errors observed in the C2DB database.

The first case is silver copper telluride (AgCuTe2), shown in Fig. 7.
On one hand, the method reliably finds all the vacancies in the struc-
ture, a task that would be very difficult by visual inspection of the
three images. On the other hand, the network fails to discover a small
spontaneous breaking of the symmetry in the structure: the Cu atoms
are slightly displaced compared to the rectangular lattice formed by the
Ag and Te atoms. This is a highly unusual configuration, and the neural
network interprets it as the far more common symmetric configuration.

In the second case, the network is locally inserting extra atoms into
the structure, creating unphysical defects, see Fig. 8. This kind of errors
should be relatively easy to spot for the scientist.

The cases in Figs. 7 and 8 were chosen manually. In the SOI, we
give examples of some of the worst and best results of the networks,
selected solely from the RMSE of the prediction.

As the examples here show, it is difficult to train a single network
to 3400 different materials, even if they are two-dimensional. The
networks trained to a single material (MoS2), with or without support,
do not exhibit these failure modes. It is therefore recommended to
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Fig. 8. An example of the neural network inserting extra atoms in several places in the system. The system is PtSeCl.

Fig. 9. Applying the neural network to three experimental images (top row) results in the exit wave function depicted in the bottom row. The network is clearly able to identify
atomic positions in the MoS2 nanoflake, but is not able to distinguish between Mo and S2. The network also provides a best guess on the positions of carbon atoms in the
support, but as the support is graphite and the network was trained on single graphene layers as support, that cannot be considered reliable. The defocus values are as reported
by MacTempas (overfocus), which uses the opposite sign convention from abTEM and this work. The colours are the same as in Fig. 1.

train networks to smaller classes of materials matching the kinds of
systems being studied experimentally. Furthermore, the kinds of errors
shown here can be detected by training two or more different networks
to similar data sets, and detecting when the networks differ in their
prediction.

5. Application to experimental data

We apply the method to experimental data, a focal series of a
MoS2 model catalyst recorded on the TEAM 0.5 transmission electron
microscope at 50 keV beam energy. The data analysed here is similar
to what was published recently by Chen et al. [20], and we refer to that
publications for details regarding the experimental setup.

In their publication, Chen et al. used focal series of 20–44 images
to reconstruct the wave functions. Here, we have selected three images
from their focal series for analysis by the neural network.

As the resolution of this image series is significantly lower than what
we have otherwise been using in this work (0.227 Å/pixel instead of
0.105 Å/pixel) we retrained a network for this resolution, based on the
same data set of supported MoS2, but resampled to resolutions in the
interval from 0.215 to 0.235 Å/pixel. The lower resolution had only
a small detrimental effect on the network performance when tested
on the validation set. We then selected three experimental images
with a difference in defocus of 50 Å, to match the defocus difference
between the three images used to train the network. The images and
the resulting exit wave are shown in Fig. 9. As can be seen, a clear exit
wave is reconstructed, showing the honeycomb lattice of the supported
MoS2 nanoflake, and of the supporting graphite lattice (few layers of
graphene). However, an Argand plot is not able to distinguish the
lattice points of the Mo and S sublattice (not shown), consistent with
what we saw in simulated images (see Fig. 5, panel e and f). In both
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cases, the reason is the same. Some peaks in the wave function of the
MoS2 coincide with peaks from the graphite, some do not, and that
leads to greater variation between peaks than the difference between a
Mo atom and two S atoms.

In their publication, Chen et al. [20] were able to distinguish
between peaks from Mo and S atomic columns, but their analysis
of the exit wave is also more elaborate. First, they Fourier filtered
their images, removing spatial frequencies coming from the graphene
support from the exit wave. Second, even if a clear distinction of the
peak imaginary values of the Mo and two S atomic columns were made,
it is worth noticing that the chemical interpretation of the relative
intensities calls for caution. As reported by Chen et al., the peak values
can be severely reduced and the imaginary parts be broadened across
a nanocrystal due to heterogeneous vibrations response of the sample
under illumination. Chen et al. offers a framework for an interpretation
of the exit wave function. This interpretation is independent of the way
in which the exit wave function is reconstructed, which is the prime
objective for the present analysis.

With even just a few images, the network can already capture the
main arrangement of the atomic columns based on an experimental
focal series of low-dose HRTEM images. Further inclusion of images
from the focal series might help in better account for the column
intensities and role of high order aberrations on the contrast blurring
in the experimental image. For a full qualitative analysis of the exper-
imental data, networks would have to be trained to specifically take
into account a more realistic model for the vibrations of the atoms, as
well as the more complicated multilayer support in the experimental
data. In addition, the network should be trained to handle carbon
contamination of the sample.

6. Comparison to traditional exit wave reconstruction

To be able to compare this method with more traditional methods
for exit wave reconstructions, we have applied the algorithm of Gerch-
berg and Saxton [36], as implemented in MacTempas version 2.4.50, to
three simulated image series of graphene supported MoS2. The systems
were selected according to how well they had been reconstructed by the
neural network, we chose the 25, the 50 and the 75 percentile images
(Figures S10, 2 and S11, respectively).

The generated data sets contain eleven images with a 1 nm change
in defocus between each of them, leading to a total defocus range of
10 nm, the same that was used for the neural networks. All eleven
images are used for the Gerchberg–Saxton(GS) exit wave reconstruc-
tion, whereas only three (the first, middle and last) were used for
reconstructions with the neural network.

The GS exit wave reconstruction algorithm was given the actual
values of the defocus, the spherical aberration (𝐶𝑠) and the focal
spread, instead of determining them through an optimization process
as is usually done. No coma or 2-fold astigmatism was assumed in
the reconstruction process, although both coma and astigmatism were
present in the images.

In contrast, the neural network does not require any of this infor-
mation, it is trained to reconstruct the wave function a few Ångström
below the lowest atom in the sample without further knowledge of
neither the exact values of the defocus, nor of the aberrations of the
microscope, except that they are within the intervals used to train the
neural network (Table 1).

A comparison between the neural network and the more traditional
exit wave reconstruction is shown in Fig. 10. At first sight, it looks like
the neural network strongly outperforms the traditional reconstruction,
the difference between the reconstructed image and the original ground
truth wave function is much smaller for the neural network recon-
struction. However, this is mainly because the longest wavelengths in
the exit wave have not been reconstructed by the Gerchberg–Saxton
algorithm, leading to the phase of the wave function locally being
averaged to zero. It is thus more fair to compare the reconstructed

Fig. 10. Comparing the neural network with a traditional algorithm for exit wave
reconstruction. (a) and (b) The first and last images in the image series. (c) The exit
wave reconstructed by the network. (d) The ground truth (correct) exit wave. (e) The
exit wave reconstructed by the Gerchberg–Saxton algorithm. The large deviations are
due to the long wavelength part of the exit wave not being reconstructed. (f) The
ground truth wave function with the longest wavelengths removed. The colourmap for
the exit wave is identical to the one in Fig. 1.

wave in Fig. 10(e) with a ground truth wave function where the longest
wavelengths have been filtered out (panel f), using a Gaussian filter
with a width of eight pixels (0.9 Å). In this case, visual inspection
indicate that the error of the two models are of similar magnitude,
although the neural network appears to be performing best. This is
confirmed by calculating the Root Mean Square Error for the CNN
reconstruction (i.e. for the difference between panel c and d) and for
the Gerchberg–Saxton(panels e and f). The RMSE is 0.013 and 0.061,
respectively.

The system shown in Fig. 10 is the 25-percentile system. Similar
plots for the 50 and the 75-percentile systems are shown in the SOI
(Figures S13 and S14). It should be noted that the Gerchberg–Saxton
reconstruction of the 50-percentile image is of significantly lower qual-
ity than the two others, although the neural network did not have
problems with this image series. This could be due to those images
having both 2-fold astigmatism and coma in the upper end of the range
shown in Table 1.

Inclusion of more aberrations than the ones in Table 1 might change
these conclusions, and might require using more images for the neural
network reconstruction to be reliable. It does, however, appear that a
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neural network is able to quickly give a reconstructed exit wave of a
quality at least comparable to a traditional exit wave reconstruction
from only a few images.

7. Conclusions

Convolutional Neural Networks are a promising alternative to tra-
ditional exit wave reconstruction, with the obvious advantage that
they only require a few images instead of a long image sequence,
that the data processing is fast enough to be done in real time at the
microscope, and that detailed knowledge of the aberration parameters
of the microscope is not needed. It does, however, require that the
networks are optimized for the systems at hand.

As expected, the method works best for simpler systems, illustrated
here with unsupported and graphene-supported MoS2 nanoparticles,
where the exit waves are reproduced with a fidelity that allows for
both qualitative and quantitative analysis. For significantly more com-
plicated structures, illustrated here with the relatively diverse C2DB
dataset, the network overall performs well, but fails to reconstruct some
details in some of the more complex materials. Nevertheless, even in the
more complicated materials, the majority of the structure including the
positions of point defects is recovered by the neural network.

One could hope that the neural network had learned to generally in-
vert the Contrast Transfer Function of the microscope. That is, however,
not the case. The network utilizes knowledge about ‘‘likely’’ structures
based on the kind of structures it has seen in the training set, and must
be trained on structures similar to the ones it will be used to analyse. On
the other hand, this use of prior knowledge of the systems is probably
what enables the network to reconstruct the exit wave based on only
three input images, and without knowledge of the actual parameters
of the CTF. It should be pointed out that including further aberrations
than the ones used in this work (Table 1) may require using more than
three images as input to the neural network.

In summary, we have demonstrated that neural networks can be
trained to reconstruct the exit wave function of a varied class of two-
dimensional materials, with only three HRTEM images with different
defocus as input to the network. We can train and validate the network
on simulated data, and then apply it to analyse experimentally obtained
data, demonstrated here with the case of MoS2 supported on graphene.
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Abstract

Motivated by the need for low electron dose transmission electron microscopy imaging, we report the optimal frame dose

(i.e. e−/Å
2
) range for object detection and segmentation tasks with neural networks. The MSD-net architecture shows

promising abilities over the industry standard U-net architecture in generalising to frame doses below the range included
in the training set, for both simulated and experimental images. It also presents a heightened ability to learn from lower

dose images. The MSD-net displays mild visibility of a Au nanoparticle at 20-30 e−/Å
2
, and converges at 200 e−/Å

2

where a full segmentation of the nanoparticle is achieved. Between 30 and 200 e−/Å
2

object detection applications are
still possible. This work also highlights the importance of modelling the modulation transfer function when training
with simulated images for applications on images acquired with scintillator based detectors such as the Gatan Oneview
camera. A parametric form of the modulation transfer function is applied with varying ranges of parameters, and the
effects on low electron dose segmentation is presented.

Keywords: HR-TEM, Machine Learning, Modulation Transfer Function, Signal-to-noise, Beam damage

1. Introduction

High-resolution transmission electron microscopy (HR-
TEM) is a primary method to characterise materials at
the atomic scale, and is a method where an abundance
of data can be obtained. HR-TEM can provide a greater
temporal resolution, as opposed to scanning transmission
electron microscopy, by illuminating the entire sample si-
multaneously. It does this, however, at the cost of the
signal-to-noise ratio (SNR). Increasing the frame dose of
the image can assist in increasing the interpretability of
each image, but it is usually undesired to do so to avoid
electron beam induced effects that are yet to be completely
understood [1, 2, 3]. The averaging of many images is an-
other method to increase the SNR. This method, however,
lowers the temporal resolution and can be a tedious task
that requires complex image alignment to ensure sensible
results. Image alignment is also frame dose dependent as
the alignment between low SNR images becomes difficult.
Addressing SNR related issues has led to a quest in devel-
oping denoising methods [4, 5], often using neural networks
[6, 7].

The field has seen a steady increase in applying ma-
chine learning solutions to solve various tasks of analysing
and interpreting data. The importance of including ma-
chine learning in a standard workflow for HR-TEM charac-
terisation is highlighted in multiple works [8, 9]. Pipelines
for training neural networks for segmentation with hand

labelled experimental data have been developed, such as
the pipeline by Groschner et al. [10], where segmented
nanoparticles are classified to acquire sufficient statistics
on various classes of nanoparticles. The segmentation of
nanoparticles is also useful for tracking dynamic behaviour
across frames [11]. Simulated images provide possibilities
for large amounts of accurately labelled images for training
and have been used to identify and analyse atomic columns
in experimental HR-TEM sequences [12, 13]. Vincent et
al. also used simulated images to train neural networks
for denoising [7]. Due to the successes of deep learning
powered analysis of HR-TEM images many are seeking to
understand the important aspects of optimising the gen-
eralisability and applications of deep learning models, and
attempt to determine the best models available in com-
parison to eachother and other thresholding or clustering
methods [14, 15].

In this work we look to continue the search for optimal
simulated training data and neural networks, by consid-
ering the specific task of low SNR segmentation. We will
report the optimal frame dose range for reliable segmenta-
tions by neural networks and how to control that range by
tuning simulations. For this task we focus on the segmen-
tation of metallic nanoparticles, more specifically CeO2

supported Au nanoparticles. Au nanoparticles serve as a
useful system for studying catalytic properties of metallic
nanoparticles [16].

Preprint submitted to Elsevier February 27, 2023

ar
X

iv
:2

30
2.

12
62

9v
1 

 [
co

nd
-m

at
.m

tr
l-

sc
i]

  2
4 

Fe
b 

20
23



2. Methods

This work utilises two different network architectures
to perform the segmentations. The first is the well recog-
nised U-net [17] architecture used by Madsen et al. [12],
with the only modification that the skip connections are
now concatenations rather than element-wise additions [18].
The other is the MSD-net introduced by Pelt et al. [19],
which was highlighted to be a robust network against low
SNR images. Both networks are convolutional neural net-
works that differ in their approach to capturing informa-
tion from varying spatial distances in the image. The U-
net’s approach gives its characteristic U-shaped architec-
ture due to the numerous down-sampling and up-sampling
layers to spread the convolutional kernel over patterns with
large spatial coverage. The MSD-net in contrast maintains
the same resolution throughout all layers, but dilates the
convolutional kernel to spread the weights over a larger
spatial region. Specific hyper-parameters regarding the
network architectures can be seen in the supplementary
information section Appendix A.1.

To train the neural networks, supported nanoparticles
are constructed with the Atomic Simulation Environment
(ASE) [20] and HR-TEM images are simulated using abTEM
[21]. For this work, Au face centred cubic structures of
varying sizes are generated so that the [110] crystal di-
rection is aligned with the optical axis, with a slight ran-
dom tilt off zone axis of up to 3◦. At a random layer
from the centre of the nanoparticle the [111] direction is
truncated, effectively slicing a (111) plane. The exposed
face of the FCC structure is attached to a (111) plane of
a CeO2 slab. These systems are randomly rotated about
the optical axis, and contain varying sizes of nanoparticles.
This replicates realistic interfaces between Au and CeO2

identified by Liu et al. [16]. The image simulation then
applies the parameters shown in Table 1. This is a rel-
atively cheap operation, since the expensive part of the
image simulation is generating the exitwave by computing
the multislice algorithm [22]. Applying imaging imperfec-
tions such as the contrast transfer function (CTF) and the
modulation transfer function (MTF) can be done multiple
times on the same exitwave, which generates multiple im-
ages of the same nanoparticle with varying imaging condi-
tions. These images are pre-generated and stored to allow
for a controlled comparison between networks on the exact
same dataset. Training epochs cycle through the different
sets of images of the same atomic system. Each set of im-
ages is referred to as an image epoch. With 300 training
epochs and 10 image epochs, each image is reused 30 times
in training.

Mask labels are binary images separating the Au nano-
particle from the surrounding vacuum and the CeO2 sup-
port. This is generated by computing the convex hull of
the atomic coordinates. The neural networks are trained
to map a single HR-TEM image to a binary mask la-
bel image, which will provide the pixels containing the
nanoparticle separate from the pixels containing substrate

and vacuum. An example of this is shown in Fig. A.10.
Once the network is trained it can be applied to an image,
either simulated or experimental, and will return a proba-
bility map. Each pixel will be classified to belong to either
the nanoparticle or the background (vacuum or substrate)
class at some probability. This is referred to as the net-
work inference or prediction and a threshold is applied at
0.9 to generate a binary predicted mask of the pixels that
the network classify with at least 90% confidence.

Parameter L U Unit
Acceleration voltage 300 keV
Defocus (∆f) -200 200 Å
Spherical aberration (Cs) 0 12.45 µm
Focal spread 5 20 Å
Blur 0.1 0.8 Å

Frame dose 102 106 e−/Å
2

Resolution 0.07 0.08 Å/pixel

Table 1: Microscope parameters. For each image series, a set of
microscope parameters are drawn within the limits given here, except
the acceleration voltage which is kept constant. L and U denote the
lower and upper limits, respectively. All distributions are uniform,
except for the electron dose which is exponential.

Experimental images of a CeO2 supported Au nanopar-
ticle were acquired on an image corrected FEI Titan 80-
300 ECELL at 300 keV, using a Gatan OneView detector.
The Au nanoparticle is imaged initially at a frame dose of

10 e−/Å
2
, where noise dominates the images. The dose-

rate is continuously increased to above 1000 e−/Å
2
, where

atomic columns are relatively visible. The Au nanoparti-
cle is situated in vacuum at 200◦C, so it is expected that
the nanoparticle is relatively inert. We refer to work by
Lomholdt et al. [23] for experimental details and details
of the SNR at varying frame doses.

Our approach here is to utilise the segmentation of the
final frame of this continuously increasing doserate series
as a pseudo-ground truth to gauge the performance of the
network at lower frame doses. Due to drift in the images
of the nanoparticle, pixel-wise scores such as the F1-Score
will not be used, instead we will measure the area of seg-
mentation, where the ground truth area will be the target.

For scintillating material based detectors, such as the
Gatan OneView, the approximation of pure Poissonian
noise in HR-TEM images breaks down, since the spectral
profile of the noise is altered by the modulation trans-
fer function (MTF) [24, 25]. This function is the Fourier
transform of the point spread function, which is an in-
trinsic property of the scintillating material [26]. Here we
study the parametric form from Lee et al. [27], shown in
Eq. 1.

MTF (q̃) = (1− C) · 1

1 + ( q̃
c0

)c3
+ C (1)

where the spatial frequencies are normalised by the Nyquist
frequency, which is related to the sampling, s of the detec-

2



tor by q̃ = q/qN = 2 · q · s. The limits of the function are 1
for q̃ → 0 due to a normalisation and C for q → ∞. The
function is fitted following the noise method described in
Ref. [26].

3. Results

The following section will present results presenting
how to achieve reliable and robust low dose segmentations
of HR-TEM images. This will be divided into firstly a com-
parison of two neural network architectures and their abil-
ity to differentiate signal from noise. The neural networks
will be trained on simulated data with different electron
dose ranges to gauge their abilities to learn from training
datasets of varying difficulty. After this a detailed analysis
on how to tune performance by optimising the MTF will
be presented.

3.1. Dataset Dose Limits and Neural Network Compari-
son

An obvious first step in approaching segmentation of
low SNR data is to investigate the performance of various
architectures. Here we use the experimental image series
to benchmark the U-net against the MSD-net and identify
the best neural network for low SNR HR-TEM segmenta-
tion. We test the neural networks abilities to train on two
different ranges of frame dose presented in Table 2. The
low frame dose range covers the range of the experimen-
tal data series in this work, where-as the high frame dose
range feeds the network much clearer simulated images,
making it an easier dataset to learn.

Parameter L U Unit

High frame dose range 102 106 e−/Å
2

Low frame dose range 101 104 e−/Å
2

Table 2: Frame dose ranges for simulated images.

Comparisons will be made by plotting the segmented
area versus frame dose to identify when each network be-
gins to detect the nanoparticle and when the segmented
area converges i.e. the network identifies the entire nanopar-
ticle. The final frame segmentation should be understood
as a a pseudo-ground truth. The aim is to segment a sim-
ilar area as in the ground truth at as low frame dose as
possible. The area may not be exact due to possible mor-
phological changes in the nanoparticle. The morphological
changes and slight drift disallows the use of, for example,
an F1-Score against the given frame and the ground truth
for the experimental data series, since the overlap of the
segmentations will not be sensible at a pixel-wise level.
The ideal case of these plots will be a step function, mean-
ing the entire nanoparticle is immediately identified, at
some minimal frame dose.

The MSD-net presents an ability to generalise outside
of the training data range, whereas the U-net only per-
forms within the training data range. Training the MSD-
net on the low frame dose range increases the visibility

of the nanoparticle between 40-100 e−/Å
2

by ∼50%, as
seen in Fig. 1(a), however it is also a noteworthy feature
that the MSD-net is able to segment significant regions
below the lower limit of the high frame dose range when
trained on the high frame dose range. This proves a su-
perior ability to separate noise to signal and generalise
beyond the limits of the training set, which means the
MSD-net is a better candidate for when data is limited.
Fig. 1(b) visualises the improvement in low dose segmen-
tation by overlapping the ground truth segmentation (cyan
coloured mask), with the segmentation from the two net-
works trained on each dose range (colour coded mask).
The MSD-net trained on both dose ranges show a lower

limit at 20-30 e−/Å
2
.

Predictions from the U-net are not as robust as the
MSD-net. Fig. 2(b) shows that the U-net trained on the
low frame dose range is not entirely reliable due to the
difficulties in defining the edges of the nanoparticle. Com-
paring the low dose trained MSD-net segmentation at 49

e−/Å
2

in Fig. 1(b) to the low dose trained U-net at 49

e−/Å
2

in Fig. 2(b), the segmented area is similar however
the edges are more well defined in the segmentation from
the MSD-net.

The low dose trained U-net achieves some visibility a

few e−/Å
2

below the MSD-net, as seen in Fig. 2, however
the over segmentation at higher dose highlights that this
network is possibly being triggered by noise as well. In Fig.
A.11 the F1-Score as a function of training epochs with
simulated data highlight that the low dose range dataset
becomes a harder problem for both neural networks to
learn and generalise. Both networks show greater signs
of overfitting. The MSD-net seems to handle more diffi-
cult problems better than the U-net. Finally Fig. 3 com-
pares the two networks trained on the high frame dose
range data, showcasing the performance gain in the low
frame dose regime with the MSD-net segmenting 50% of
the nanoparticle at a ∼70% lower frame dose, and both

show a reliable convergence at 200 e−/Å
2
.

3.2. Frame dose limit

Low dose segmentation performance relies on a proper
modelling of the noise in the simulated data. The following
will described how noise characteristics are extracted from
experimental data and modelled in simulated data. Eq.
1 was fitted to the azimuthally averaged centred Fourier
transform of the vacuum region in the images, as done in
[26, 27]. See Fig. A.12 and A.13 for the fitted MTF of
the first frame and last frame of the experimental image
series, respectively. Fig. 4 presents a distribution of fitted
parameters dependent on the frame dose of the experimen-
tal images. The parameter points with white dots are the
fits with an R2 ≥ 0.98.
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Figure 1: Comparison of the MSD-net trained with simulated images within the high frame dose range to simulated images within the low
frame dose range (see Table 2). (a) Segmented area of each model as a function of frame dose. Black dashed line represents the convergence
of the area of segmentation, symbolising where the network segmented the entire nanoparticle. The minimum and maximum area beyond
this point form the shaded grey bar as a visual aid for the target area of segmentation. Colour coded dashed lines for each model is shown
representing the frame dose at which the model achieves 50% segmentation of the nanoparticle. (b) Colour coded examples of the segmentation

at 49 e−/Å
2

overlapped with the segmentation of the final frame (ground truth). This highlights the ability to achieve low dose segmentation.

Figure 2: Comparison of the U-net trained with simulated images within the high frame dose range to simulated images within the low frame
dose range (see Table 2). (a) Segmented area of each model as a function of frame dose. Black dashed line represents the convergence of the
area of segmentation, symbolising where the network segmented the entire nanoparticle. The minimum and maximum area beyond this point
from the shaded grey bar as a visual aid for the target area of segmentation. Colour coded dashed lines for each model is shown representing
the frame dose at which the model achieves 50% segmentation of the nanoparticle. (b) Top: maximum segmentation overlapped with the
segmentation of the final frame (ground truth). This highlights any over-segmented areas, due to difficulties in defining the boundaries of the

nanoparticle. Bottom: Segmentation at 49 e−/Å
2

overlapped with the segmentation of the final frame (ground truth). This highlights the
ability to achieve low dose segmentation.
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Figure 3: Comparison of the MSD-net’s and U-net’s ability to learn
to distinguish between signal and noise. The plot shows the seg-
mented area of each model as a function of frame dose. Black dashed
line represents the convergence of the area of segmentation, symbol-
ising where the network segmented the entire nanoparticle. The min-
imum and maximum area beyond this point from the shaded grey
bar as a visual aid for the target area of segmentation. Colour coded
dashed lines for each model is shown representing the frame dose at
which the model achieves 50% segmentation of the nanoparticle.

It is vital to understand the role of each parameter
in Eq. 1, to interpret the distributions in Fig. 4. The
c0 parameter represents the q̃ value of the half-maximum,
which increases with frame dose and converges around 200

e−/Å
2
. This means that at frame doses above 200 e−/Å

2

spatial frequencies up to ∼ 0.27 · qN are maintained at at
least half maximum, but for lower doses the function is
narrower. As a result spatial frequencies above c0 · qN are
effectively filtered out at higher frame doses. The curva-
ture of the function is consistently close to a Lorentzian
form, as revealed by the c3 parameter (higher values ap-
proach a low pass step function). The C parameter reveals
the change in the tail of the function i.e. the q →∞ limit.
C is non-zero at lower frame dose and approaches 0 at
higher doses. We interpret this as a fraction of the noise
that is not subject to the point spread function of the scin-
tillator, but is generated later in the detection process. We
label this part of the noise “readout noise” although it may
come from more than one source.

All parameters show most variation below 200 e−/Å
2
.

The variation below this limit is likely due to the transition
between readout noise and shot noise as the dominating
noise source [28].

The readout noise appears after the scintillating ma-
terial and is therefore not affected by the MTF. The con-
tributions of the readout noise and shot noise are mod-
elled separately in our simulations and in order to extract
the fractional contribution of each noise source we look
at the C dependency of the frame dose in electrons per
pixel. This value represents the noise floor in the im-
age. At higher frame dose this noise floor is washed out
by shot noise, but at lower dose the readout noise domi-
nates. The shot noise is modelled as a Poisson distribution,
P (λ = ND), where ND is the frame dose in electrons per

pixel. The read out noise is also modelled as a Poisson dis-
tribution, P (λ = N0), where N0 is a constant noise floor.
The total noise is a sum of the two Poisson distributions

P (λ = ND) + P (λ = N0) = P (λ = (ND +N0)) (2)

meaning that each pixel intensity, Ix,y in the final image
is within the distribution

Ix,y = ND +N0 ±
√
ND +N0. (3)

In Fig. 5, we extract N0 from the fractional contribution
of the readout noise deviation to the total noise deviation.

Figure 4: The fitted parameters of Eq. 1 for each frame in the data
series. Fits with R2 ≥ 0.98 are marked by a white dot. The orange
line represents the mean value.

The approach we have taken to model the variations
of c0 and c3 is to randomise the parameters within a given
range as done by Madsen et al. [12], which alters the
spectral profile of the shot noise. The extracted N0 is
varied at ±50%, i.e. N0 ∈ [0.005, 0.015] when applied
to simulated images. In Fig. A.14, we show that with the
fitted N0 applied as a separate Poissonian noise source, we
are able to replicate the C parameter dependency on the
frame dose from MTFs fitted to a simulated image series of
vacuum at increasing frame dose. The parameters c0 and
c3 show random values within the given range as expected.

Table 3 summarises 5 different MTF parameter ranges
applied to 5 simulated datasets of identical atomic sys-
tems. All apply the microscope parameters from Table
1. An identical MSD-net is trained on each dataset. The
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Figure 5: The correlation of the C parameter of Eq. 1 to the frame
dose as electrons per pixel. The fraction of readout noise, N0 is
extracted from its fractional contribution to the total noise. The
orange lines shows the fitted curve with R2 = 0.94 and N0 = 0.01.

first model, MTF 1, will take the parameters from Ref.
[12]. Motivations behind the other MTF models will be
explained as the results are discussed.

MTF
c0 c3 N0

L U L U L U
1 0.4 0.6 2.0 3.0 0.005 0.015
2 0.4 0.6 1.0 5.0 0.005 0.015
3 0.2 0.3 1.0 5.0 0.005 0.015
4 0.25 0.6 2.0 5.0 0.005 0.015
5 0.6 0.8 2.0 5.0 0.005 0.015

Table 3: The various MTF models studied in the work. 1-5 represents
different ranges of parameters in Eq. 1.

Higher values of c0 in MTF 1 and MTF 2 assist the net-
work in low frame dose segmentation. Fig. 6(a) presents
the visibility of the entire nanoparticle as a function of
frame dose from 3 MSD-net models trained on MTF mod-
els 1-3 individually. MTF 1 and MTF 2 show very simi-
lar performance, which highlights that it is not important
that the form of the MTF is exactly Lorentzian. This
was determined by ranging c3 over a larger range in MTF
2. Following this result, MTF 3 samples a range of c0
more suited to the fitted ranges in Fig. 4. The result of
this range were detrimental on the low dose performance,
delaying the visibility of the nanoparticle by ∼25% in elec-
tron dose.

Applying the range of c0 within the experimental fit by
MTF 3 provide more refined segmentations at higher frame
dose. The variations in the segmented area at higher doses
for the MTF 3 trained model are smaller than that of the
MTF 1 and 2. The variations of MTF 1 and MTF 2 are
shown by the shaded grey region. These variations can be
due to difficulties in defining the boundaries between the
nanoparticle and substrate/vacuum in the images. Fig.
6(b) shows the maximum segmented area of MTF 2 (top)
and MTF 3 (bottom). Here it is seen that the MTF 2

trained model has minor difficulties in defining the border
of the nanoparticles.

We speculate that preserving spatial frequencies up
to around half-Nyquist is preferential for the networks to
learn to differentiate signal from noise. In practice this
means having a c0 that ranges up to or slightly above
0.5 · qN . Values of c0 within the fitted range from experi-
mental data is however also necessary for refining bound-
aries of the segmented areas.

MTF 4 ranges between the lower limit of the fitted c0
from MTF 3 and the upper limits of c0 from MTF 1 and
2, and achieves the low dose performance of MTF 1 and
2 and the refined boundaries of MTF 3 at higher dose.
MTF 5 samples larger c0, beyond half-Nyquist, with the
same range as MTF 1 and 2. Fig. 7(a) presents the per-
formance of MTF models 2,4, and 5. MTF 5 shows much
more visibility at low dose frames, however much more
sporadic variations in the higher frame dose regime. Fig.
7(b) shows the maximum segmented area of MTF 5, which
highlights its weakness in identifying the borders of the
nanoparticle; The segmentation bleeds into the surround-
ing vacuum. This renders the low dose segmentations of
MTF 5 unreliable, as it seems it is being triggered by noise
in the vacuum. MTF 5 has such a high c0 range that it
approaches a noise profile appropriate for direct electron
counting detectors such as the Gatan K2/3 camera [25].
The maximum segmentation of MTF 4 in contrast shows
very sharp separations between the nanoparticle and its
surroundings. This proves that ranging c0 such that it
covers the range fitted from experimental data, but also
such that it retains spatial frequencies up to half-Nyquist
is ideal for optimal segmentation performance across the
entire frame dose range.

We note that in all cases the area of segmentation

converges at approximately 200 e−/Å
2
, depicted by the

dashed black line. This is the first reported lower limit of
frame dose for a reliable full segmentation.

The overlap in the middle of Figs. 6(b) and 7(b) shows
the morphological changes in the nanoparticle but also
highlight that both are segmentations of the same nanopar-
ticle. Here we also highlight that the segmentation is sen-
sible and we show that this is at a level where a human
interpreter would have difficulties being certain of the pres-
ence of the entire nanoparticle.

The segmentations below 200 e−/Å
2

are not full seg-
mentations and cannot be used to for example measure the
area, but can still be used for object detection purposes
and regional Fourier transform extraction. For these pur-
poses 50% of segmentation would be a sensible minimum,
represented by the colour coded dashed lines in Figs. 1(a),
2(a), 6(a), and 7(a).

To further prove the performance of the MTF 4 model,
we show that an MSD-net trained with the MTF 4 model
performs better on a simulated dataset with the MTF 3
model applied, compared to an MSD-net trained with the
MTF 3 model. An image series was simulated to repli-
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Figure 6: Comparison of the first 3 MTF models presented in Table 3. (a) Segmented area of each model as a function of frame dose. Black
dashed line represents the convergence of the area of segmentation, symbolising where the network segmented the entire nanoparticle. The
minimum and maximum area beyond this point from the shaded grey bar as a visual aid for the target area of segmentation. Colour coded
dashed lines for each model is shown representing the frame dose at which the model achieves 50% segmentation of the nanoparticle. MTF 2
shows the best performance (most nanoparticle visibility at the lowest frame dose). (b) Colour coded examples of the maximum segmentation
overlapped with the segmentation of the final frame (ground truth). This highlights any over-segmented areas, due to difficulties in defining
the boundaries of the nanoparticle.

Figure 7: Comparison of the last 3 MTF models presented in Table 3. (a) Segmented area of each model as a function of frame dose. Black
dashed line represents the convergence of the area of segmentation, symbolising where the network segmented the entire nanoparticle. The
minimum and maximum area beyond this point from the shaded grey bar as a visual aid for the target area of segmentation. Colour coded
dashed lines for each model is shown representing the frame dose at which the model achieves 50% segmentation of the nanoparticle. MTF
4 shows the best performance (most nanoparticle visibility at the lowest frame dose and a tight convergence of the segmented area). (b)
Colour coded examples of the maximum segmentation overlapped with the segmentation of the final frame (ground truth). This highlights
any over-segmented areas, due to difficulties in defining the boundaries of the nanoparticle.
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cate the experimental series. This simulated series con-
tains 1000 images of a CeO2 supported Au nanoparticle
in the [110] zone axis positioned similarly to the exper-
imental sample, with a blur range of [0.1, 0.2] Å, focal
spread range of [5, 6] Å, defocus range of [48, 50] Å, Cs

range of [7, 8] µm, a frame dose from [101, 104] e−/Å
2
,

and the MTF 3 model. In this case we have exact ground
truths and the F1-Score will be used as a metric. Fig.
A.15a presents a histogram of the F1-Score for each image
in the simulated series for both networks in mention. It
is immediately apparent that the MTF 4 dataset trains
a network that outperforms the MTF 3 trained network
on images with the MTF 3 ranges applied. Fig. A.15b
displays the F1-Score against frame dose, which highlights
the improved performance of the MTF 4 dataset trained
MSD-net is primarily on low frame dose simulated images,

with a higher mean F1-Score in the range of 10-100 e−/Å
2
.

4. Conclusions

In this work we have investigated the quantitative limit
of low SNR HR-TEM image segmentation. A continuously
increasing frame dose HR-TEM image series of a CeO2

supported Au nanoparticle was acquired to rate the per-
formance of neural network segmentations at low frame
dose and compare the segmentation to the final (highest
frame dose) frame.

The results show that the neural networks are achiev-
ing human level performance, which means it can safely
be equipped for large-scale automated analysis to relieve
the human operator of repetitive tasks.

The MSD-net showed promising low SNR performance
compared to the industry standard U-net. The MSD-net
showed an ability to generalise outside the frame dose
range of the training set and provide reliable segmenta-

tions, with well defined boundaries down to 20 e−/Å
2
. The

U-net was only able to operate within the given training
range, and when trained with lower dose images, presented
weaknesses in defining boundaries between the nanoparti-
cle and its surroundings. This highlights the MSD-net’s
superior ability to learn the differences between signal and
noise.

A parametric form of the MTF was fitted to all frames
in the HR-TEM series resulting in a frame dose dependent
range of parameters. The noise contributions were sepa-
rated into two sources, shot noise and readout noise, and
the fractional contribution of each was extracted from the
noise floor given by the C parameter of Eq. 1. It was
shown that modelling the MTF to retain spatial frequen-
cies up to ∼ 0.5 · qN with at least half-maximum assisted
the MSD-net in detecting the nanoparticle at lower frame
dose. It seems that modelling the MTF with a wide range
of parameters that both consist of parameters within the
fitted range and parameters that maintain spatial frequen-
cies up to half-Nyquist allows the MSD-net to operate in
both the shot noise and readout noise dominated regimes.

All results converged at 200 e−/Å
2
. This is the first

report of a frame dose limit for reliable neural network
segmentations. Neural network predictions with HR-TEM

images between 20-100 e−/Å
2

are still useful for object
detection purposes.

Knowledge of these frame dose limits will provide the
community with realistic expectations from deep learning
models and an ability to design experiments that are op-
timised for their needs from deep learning powered anal-
ysis tools, whether it be object detection in live low dose
imaging, or statistical data accumulating of morphological
properties, amongst others.
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Appendix A. Supplementary online information

Appendix A.1. Network architecture

Figure A.8: The architecture of the U-net. Information flows from
left to right. The first part of the network, the “encoding path”, con-
sists of convolutional processing blocks alternated by downsampling
layers using the MaxPool method. The second part, the “decoding
path”, consists of convolutional blocks alternated by bilinear upsam-
pling layers. Long skip connections ensures that the original spatial
information can be maintained. Adapted from Madsen et al. [12]

The U-net architecture is identical to Ref. [18], with a
difference in the initial number of channels. From hyper-
parameter tuning it was seen that increasing the channels
minimised overfitting and provided more robust results for
segmentations. The network consists of a downsampling
(or “encoding”)) path, where convolutional blocks alter-
nate with downsampling layers, and an upsampling (or
“decoding”) path, where the convolutional blocks alter-
nate with upsampling layers (see Fig. A.8). The convolu-
tional blocks consist of 5 convolutional layers, with a short
skip connection between the output of the first layer and
the input of the fifth.

The downsampling is done with conventional MaxPool
operations. Each time the resolution is cut in half in a
MaxPool operation, the number of feature channels in the
following convolutional block is doubled to maintain the
information flow in the network. The upsampling is done
using bilinear interpolation, and the following convolution
block has the number of channels cut by a factor two. After
each upsampling, information from the last layer with the
same spatial resolution is added from the downsampling
path, this is done by concatenating the channels. The
first layer in the convolutional blocks in both paths will
therefore have a different number of input channels from
what is stated in the figure.

Each convolutional layer uses a 5 × 5 convolutional
kernel, followed by a Parametric Leaky Rectifying Lin-
ear Unit. Hyperparameter tuning showed no significant
improvement in increasing the kernel size above 5× 5.

Figure A.9: The architecture of the MSD-net. The convolutional
kernel dilation value is sampled from a uniform distribution in the
range [1,10]. Information flows from left to right.

The MSD-net architecture shown in Fig. A.9, is an
adaptation of the model introduced by Pelt et al. in Ref.
[19]. The network consists of 50 layers, where each layer
performs a convolution and immediately concatenates the
output with the output of the previous layer. The first
layer is an exception as it does not concatenate with the
input image.

The reoccurring successive concatenations is what clas-
sifies this network architecture in the family of dense net-
work architectures where all convolutional output filters
are connected with eachother. This MSD-net implemen-
tation utilises a 9 × 9 convolutional kernel that is dilated
to capture features at varying length scales. The dilation
value is sampled from a uniform distribution in the range
[1, 10], and seeding is provided to reproduce multiple iden-
tical MSD-net models. This is what “Mixed-Scale” refers
to in the name of the architecture.

Hyperparameter tuning showed signifcant improvements
when increasing the number of output channels, kernel
size, and number of layers, however Tensorflow’s imple-
mentation of concatenation layers consumes large amount
of memory, and so parameters of this architecture are lim-
ited by available memory.

All convolutional layers apply reflection padding to main-
tain dimensions.
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Appendix A.2. Network training

The problem definition here, as presentsed in Figures
A.8 and A.9, is to take a HR-TEM image and produce a
probability mask of the pixels corresponding to the nanopar-
ticle. An example of this is shown in Fig. A.10.

Figure A.10: Example of simulated image and its binary mark label.

Binary masks are used so that the binary cross entropy
loss (or its multi-class counterpart: the categorical cross
entropy loss) can be applied for training. This is a loss
function widely applied for segmentation problems and is
natively implemented in Tensorflow.

Fig. A.11 shows the learning curves for all networks
applied in this work. The F1-Score is shown instead of the
binary cross entropy loss, as it has a more intuitive range of
values, 1 being a pixel wise perfect segmentation and 0 the
worst result possible. The F1-Score is a harmonic mean
between the precision and recall, and properly gauges the
ability to accurately classify both positives and negatives,
i.e. identify both nanoparticle and background.

Training is executed using the ADAM gradient opti-
miser with the AMSGrad variant activated, and a learning
rate of 0.001. Many training epochs in an attempt to ob-
tain a well converged network, which is typically the most
robust when generalising to experimental data.

(a) MSD-net MTF 1 (b) MSD-net MTF 2

(c) MSD-net MTF 3 (d) MSD-net MTF 4

(e) MSD-net MTF 5 (f) U-net MTF 4

(g) MSD-net MTF 4 low dose range (h) U-net MTF 4 low dose range

Figure A.11: F1-Score learning curves for all networks applied in this
work.
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Appendix A.3. Noise Fitting

The power spectral density is defined as the magni-
tude squared of the Fourier transform. This is taken from
a vacuum region of the HR-TEM image for every frame.
This 2D-spectrum is averaged azimuthally to obtain a 1D-
spectrum, as done in Ref. [26]. Frequencies are normalised
by the Nyquist frequency, i.e. q̃ = q/qN . As shown in Fig-
ures A.12 and A.13, the spatial frequency filtering affect
of the MTF is clear. The raw spectrum

MTF (q̃) = (c1 − c2) · 1

1 + ( q̃
c0

)c3
+ c2 (A.1)

is fitted in the top of the two figures. The bottom of
the two figures presents the fitted MTF normalised by the
q → 0 limit, c1, i.e. Eq. 1.

Figure A.12: MTF fitted from the power spectral density of the first

frame at approximately 10 e−/Å
2
. Top: Raw fit (Eq. A.1) with

R2 = 0.99, c0 = 0.20, c1 = 4353.29, c2 = 2207.83, c3 = 2.57.
Bottom: Normalised MTF (Eq. 1) with c0 = 0.20, c3 = 2.57, C =
0.51.

In Fig. 5, the readout noise contribution, N0, is fitted
from its fractional contribution the the total noise floor
as a function of electron dose per pixel. A simulation of
vacuum was made, where c0 and c3 were varied within a
range of [0.2, 0.3] and [2, 3] respectively, and an addition
Poisson noise is added with N0 ± 50%. Fitting MTFs for
the simulated image series presents the same behaviour of
the C parameter as in Fig. 4, proving a sensible modelling
of the readout and shot noise contributions.

Figure A.13: MTF fitted from the power spectral density of the

final frame at approximately 1300 e−/Å
2
. Top: Raw fit (Eq. A.1)

with R2 = 0.99, c0 = 0.28, c1 = 52887.32, c2 = 602.13, c3 = 2.25.
Bottom: Normalised MTF (Eq. 1) with c0 = 0.28, c3 = 2.15, C =
0.01.

Figure A.14: Distribution of parameters for Eq. 1, fitted to a sim-
ulated vacuum image series of continuously increasing dose. This
replicates the behaviour in Fig. 4.
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Appendix A.4. Simulated MTF Comparison

(a)

(b)

Figure A.15: Comparing the networks trained separately on simu-
lated data with the MTF 4 model and the MTF 3 model. Both
networks are applied on a simulated continuously increasing dose
image series of a CeO2 supported Au nanoparticle with the MTF 3
model applied. The F1-Score ranges between 0 and 1, where 1 is a
perfect segmentation. The MTF 4 model learns to distinguish noise
and signal better than the MTF 3 model, seen by the higher mean
F1-Score. Top: Histogram of F1-Score for each image. Dashed lines
represent the colour coded mean. Bottom: F1-Score as a function
of frame dose. Solid lines represent the mean within the inset of the
very low dose regime.
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Identifying Atomic Positions in MoS2 with Neural Networks using Focal Series from
High-Resolution Transmission Electron Microscopy.
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Abstract

We demonstrate that a convolutional neural network is able to identify atomic species information from high-resolution
transmission electron microscopy images. We train the networks on simulated images of the two-dimensional material
molybdenum disulphide (MoS2) to identify atomic columns containing a Mo atom, a single or two sulphur atoms. To
do this reliably, the network needs a focal series of three images with a known difference in defocus. In this case the
networks can achieve near perfect identification of all columns over a large range of microscope parameters. Three
different network architectures were investiaged, they were all able to achieve this with 100 training images and with a
number of parameters below 105.

Keywords: HR-TEM, 2D Materials, Machine Learning, Multi-class Segmentation

1. Introduction

High-resolution transmission electron microscopy (HR-
TEM) can be used to directly visualise the arrangement of
atoms in a sample, allowing researchers to determine the
structure and properties of the material. One of the key
advantages of HR-TEM is to study the dynamics of these
atoms as they interact with each other and with their envi-
ronment. The ability to identify and study atom dynamics
is important for example to optimize functional materi-
als, and to develop new ones, as the functional properties
of these materials often depend on atomic-scale details.
Properties like mechanical strength and electrical conduc-
tivity are often determined by atomic-scale defects, and
the catalytic properties of nanoparticles often depend on
the presence of specific atomic configurations [1]. In their
operating environment, such materials may exhibit rapid
changes in their atomic configuration [2, 3] By using HR-
TEM, researchers can directly observe the movement of
atoms in space and time, providing valuable insights into
the mechanisms that govern their behaviour [4, 5]. Iden-
tifying atoms in HR-TEM can assist with understanding
the formation of catalytically active sites [6, 7], morpho-
logical changes and changes to exposed facets under dif-
ferent gaseous environments [8], edge termination of 2D-
materials [9, 10, 11], and identifying formation of vacancy
sites [12, 13].

Time resolution can be of importance when tracking
atom dynamics, which makes it beneficial to image samples
with TEM rather than Scanning-TEM (STEM), where the
entire sample is illuminated simultaneously. Intensities in
images acquired in TEM mode are less interpretable than
in STEM mode, making it increasingly difficult to extract

information of atomic columns in TEM images. Focal se-
ries are often acquired in TEM mode to add an extra di-
mension of information. These focal series can be used
to analytically reverse the effects of the contrast transfer
function between the image and the exitwave function, in
order to obtain the maximal information of atomic po-
sitions in all 3 spatial dimensions [14]. The number of
images in the focal series is typically on the order of 20-
50 images, heavily reducing the time resolution. The same
authors of this work presented the possibility of using neu-
ral networks to solve this task with a focal series of only 3
images [15]. An approximate exitwave reconstruction can
be performed in real-time with neural networks to get live
information of atomic positions and defect formation.

Defect formation is an important parameter when at-
tempting to understand electron beam induced effects on
material samples under exposure. Studies have attempted
to identify energy thresholds for defect formation in vari-
ous material samples [13, 16, 17, 18, 19]. Avoiding beam
damage in any material is essential to be able to discern the
naturally occurring structures from the oned induced by
the beam. It becomes particularly pertinent in industrially
important but beam sensitive materials, such as molybde-
num disulphide (MoS2). MoS2 is a common catalyst in the
industry used to remove sulphur from crude oil, amongst
other applications [20, 21]. Identification of various defects
in monolayer 2D transition metal dichalcogenides has been
presented for STEM images and utilising image stacking
to reduce noise, meaning a lower time resolution [22, 23].

Ultimately, identifying individual atoms in material sam-
ples is a challenging task in HR-TEM. This is an area
where machine learning can step in to assist the process.
The most common defect that occurs in MoS2 is single
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S vacancies (hereafter referred to as 1S columns). Other
possible defects are missing Mo atoms or holes where both
S atoms are missing, otherwise samples will consist of Mo
and 2S columns that are similar in intensity [13, 19]. This
work will report advancements on the tailoring of deep
learning neural networks for differentiating between indi-
vidual atomic columns in MoS2 samples by multi-class
segmentation. The ability to simulate HR-TEM images
for any given material allows for an extensive and detailed
training process, utilising amounts of data near impossible
for a human operator to handle. This concept has previ-
ously been demonstrated for tracking Au atomic columns
in HR-TEM image sequences with an industry standard U-
net architecture [24, 25]. Similar to work with Au atomic
columns [24] and exitwave reconstruction [15], training the
network to distinguish between atomic species in multi-
component material samples is possible by feeding the
network a focal series of images. For example, providing
three images of an MoS2 sample at three different defocus
settings allows a network to differentiate between atomic
columns consisting of either 1 molybdenum, 2 sulphur, or 1
sulphur atom in HRTEM images. This work compares the
performance of the U-net implementation from Ref. [26],
U-net++ [27], and MSD-net [28] in distinguishing between
the described atomic columns in simulated HR-TEM im-
ages of MoS2.

2. Methods

The MSD-net and U-net/U-net++ take different ap-
proaches in identifying features across varying length scales.
The U-net has its name from the characteristic U-shape
due to the series of down-sampling layers to spread fea-
tures across a large length scale, followed by an equal num-
ber of up-sampling layers to return to the original resolu-
tion. The MSD-net in contrast retains the same resolution
throughout all layers, but dilates the kernel to spread its
weights over a larger region. The dilation value iterates
over some given range repeatedly. The MSD-net belongs
to the family of dense-nets, as every layer in the network is
connected to previous layers by concatenations following
every convolution. The U-net++ takes the U-net architec-
ture and includes more skip connections across outputs of
layers at different resolutions, resulting in a more densely
connected network. This provides a middle ground be-
tween the two alternatives, the U-net and MSD-net, in
order to identify the best approach to this problem.

We use the F1-Score as a measure for the performance
of the networks, as it gauges the ability to avoid both false
positives and false negatives. In this work we differenti-
ate between two different F1-Scores: The pixel F1-Score
and the atomic F1-Score. The former is the typical F1-
Score computed pixel wise, i.e. every pixel contributes to
the true positives, true negatives, false positives, and false
negatives. This is a very sensitive metric, which will high-
light whether all atoms have been properly classified and
placed with pixel wise precision. For most cases pixel wise

precision is not necessary. The latter therefore identifies
the atoms in the groundtruth, and queries the prediction
for atoms found nearby. True positives (TP) are defined as
atoms identified in the predictions that are placed within
10 pixels from a groundtruth atom. With a resolution of
0.1 Å/pixel, this corresponds to predicting the atom within
1 Å from the correct position. The false positives (FP) and
false negatives (FN) are then defined as

FP = No. of predicted atoms - TP,

FN = No. of groundtruth atoms - TP .

We have simulated HR-TEM images of bare monolayer
MoS2 in the (001) crystal direction. The MoS2 systems
are generated with a random percentage of S vacancies
in the percentage range [0, 20], and Mo holes in the per-
centage range [0, 5]. Random degrees of tilt are applied
between [0, 1] degrees, and randomly shaped flakes cut
out of larger sheets. This is identical to the work in Ref.
[15], where all atoms are perturbed based on a Gaussian
distribution of 0.01 Å. The training set consists of 1000
MoS2 systems, each imaged at 10 different randomly se-
lected imaging conditions from Table 1, and a validation
set of 500 MoS2 systems only imaged once. For each sam-
ple a starting defocus value is randomly selected within
the range, then two more defocus values are selected at
+50 ± 1 Å, and +100 ± 1 Å, to simulate a focal series
with a defocus step of 50 ± 1 Å. The training process fol-
lows Ref. [26] and involves iterating over batches of 1000
images, 10 times, referred to as image epochs, such that
for 100 training epochs, each image is used 10 times. The
images are therefore pre-generated to ensure an exact com-
parison between the three different networks in mention by
executing an identical training process and testing on an
identical validation set.

Parameter L U Unit
Acceleration voltage 50 keV
Defocus (∆f) -150 50 Å
Spherical aberration (Cs) -15 15 µm
Focal spread 5 20 Å
Blur 0.05 0.25 Å
Resolution 0.1 0.11 Å/pixel

Electron dose 102.5 105 e−/Å
2

Modulation Transfer Function
c0 0.25 0.6
c3 2.0 5.0

Readout (N0) 0.005 0.015

Table 1: Microscope parameters. For each image series, a set of
microscope parameters are drawn within the limits given here, except
the acceleration voltage which is kept constant. All distributions are
uniform, except for the dose which is exponential.
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3. Results

In Figure 1 it is shown that neural networks are able to
achieve perfect atomic column identification on a majority
of the validation set when given a simulated HR-TEM focal
series. The atomic F1-Score is in the range where very few
atomic columns are being mis-classified.

Figure 1: Left: Distribution of atomic F1-Scores for each net-
work. All three present very strong detection of Mo, 2S, and 1S
atomic columns. Right: Best MSD-net segmentation from the vali-
dation dataset, visualising the background (BG) and all the identified
atomic columns of varying chemical composition.

The neural networks are able to classify the atomic
columns beyond human capabilities. This is emphasised
in Figure 2 that presents a line scan intensity of a simulated
focal series from -150 to 150 Å with a defocus step of 50
Å. The line scan is placed along a line consisting of a two
Mo columns, a single 2S column, and a single 1S column.
The intensities show that at none of these defocus settings
would a human interpreter be able to say with absolute
certainty where the Mo, 2S, or 1S columns are. The images
at 50, 100, and 150 Å defocus were fed to a neural network
and the predictions were perfect, as presented below the
image intensities of the line scan.

It is well known that neural networks train by minimis-
ing a highly muli-variate loss function space. This is done
via the back propagation where gradients of the individual
weights in the network are computed with respect to the
loss function. Similar to fitting a polynomial one can argue
that with the infinite increase of trainable weights one will
eventually fit the dataset perfectly, however there is value
in a model that fits the same data points with fewer pa-
rameters. There will be an in depth presentation of tuning
these networks to solve the segmentation problem of clas-
sifying individual pixels into a 1Mo, 2S, 1S, or background
class, where the network will have to use the limited focal
series to learn the relative intensity differences between the
classes.

3.1. Parameter Tuning

In Table 2 we highlight the significant difference in
number of parameters between the U-net architecture and
the MSD-net for parameters that maximise memory lim-
itations of the supercomputing cluster used for training.

Figure 2: Simulated focal series where a line scan is placed over two
Mo columns, a single 2S column, and a single 1S column. The inten-
sities of the image line scans in the middle present the complexity
of deducing atomic columns in HR-TEM images, however feeding a
three image focal series (an example is shown at the top) to a neural
network provides perfect atomic column identification, as shown at
the bottom comparing the groundtruth (GT) and prediction (Pred.)
line scans.

Due to the large amount of concatenation layers in the
MSD-net, this configuration reaches the memory limits at
far fewer parameters. The test loss evaluated after 300
training epochs shows greater performance from the U-net
architectures.

With simulations we have a unique abundance of data
and as a first test we search for the minimal training set
size required for the performance of these models to con-
verge. Limiting the training data size is one way to push
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Network Parameters Time
[hrs]

Test Loss

U-net 63,080,644 47.2 0.0473 ± 0.0005
U-net++ 65,750,468 52.7 0.0473 ± 0.0007
MSD-net 277,054 52.7 0.0577 ± 0.0024

Table 2: Max attainable parameters with Float32 precision format
in Tensorflow.

the networks to extremes and see which can withstand
harder training conditions. The training set of 1000 im-
ages is limited to a training set size between 10 and 1000,
but always evaluated on the validation set of 500 images.
Figure 3 presents the mean and 10th percentile pixel F1-
Score, and the mean atomic F1-Score. Each point is av-
eraged over 3 replicas of each network, using the standard
error for error bars. The result highlights a convergence
in performance at 100 images in the training set, where
the results show negligible error bars proving very repro-
ducible results.

Figure 3: Left: Mean and Middle: 10th percentile pixel F1-Score
averaged over 3 replicas of each network, and Right: the mean atomic
F1-Score as a function of training set size, all validated on the same
validation set of 500 images. All networks converge their performance
at 100 images in the training set.

A mixed precision format was utilised within Tensor-
flow’s framework, to do Float16 computations during train-
ing, which allowed for a boost in parameters for the MSD-
net. This was an attempt to push the number of train-
able parameters higher, but as a result also significantly
affected the training and inferences times. This analysis
is separated due to the hardware requirements restricting
the use of mixed precision in Tensorflow. The MSD-net
parameters and training times are presented in Table 3.
The number of parameters were also tuned for the U-net
and U-net++ by lowering the number of channels.

Each network presented in Table 3 is replicated 5 times
and trained. The mean and 10th percentile atomic F1-
Score is presented in Figure 4, where an optimal number of
parameters is identified in the vicinity of 106 parameters.
The networks here present very robust results, and the
10th percentile score reveals the networks ability of a near
perfect identification of all atomic columns for 90% of the
dataset between 105 to 107 parameters.

(a)

Kernel Channels Layers Parameters Time
[hours]

5 3 25 68,329 20.9
5 3 50 277,054 52.7
5 3 80 713,149 106.9
5 5 50 768,004 78.1
9 3 50 894,958 99.7
5 7 50 1,503,954 108.9
5 9 50 2,484,904 141.8

(b)

Channels
U-net U-net++

Parameters Time
[hours]

Parameters Time
[hours]

4 248,464 15.7 258,848 15.8
8 989,468 16.0 1,031,100 16.3
16 3,949,108 17.8 4,115,828 19.2
32 15,778,916 25.3 16,446,180 27.5
64 63,080,644 47.7 65,750,468 53.0

Table 3: Neural network models for parameter tuning. 5 replicas are
trained for each. a) MSD-net. b) U-net and U-net++

Figure 4: Left: mean and Right: 10th percentile atomic F1-Score
averaged over 5 replicas, as a function of the number of trainable
parameters in each neural network. See Table 3 for network details.

3.2. Generalisability and Limitations of the Method

For this section an additional test dataset is simulated
with the same conditions as in Table 1, however now the
defocus range is [-150, 150] Å, to include defocus values
outside the training range in Table 1 and gauge how well
the networks generalise.

All networks perform perfectly on a majority of this
test dataset. Figure 5b presents a histogram of the pixel
F1-Score on this test dataset. All networks show simi-
lar performance. Table 5a presents the pixel F1-Score for
median of the MSD-net result for each network, and the
atomic F1-Score. Comparing the pixel F1-Score value to
the predictions of each network in Figure 5c, it is apparent
that the differences in scores are not obvious, in fact it is
hard to understand why all scores are not perfect. The
atomic F1-Score presents that all networks are achieving
perfect identification of all atomic columns.

Looking at the differences between each network’s pre-
diction of the 1S class to the groundtruth in Figure 6, it is
evident that the imperfect pixel F1-Score stems from the
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Network Pixel Atomic
U-net 0.897 1.0
U-net++ 0.885 1.0
MSD-net 0.891 1.0

(a)

(b) (c)

Figure 5: Example of using the pixel wise F1-Score as a metric. (a) The median score for each network. (b) Histogram of the scores for all
examples in the test dataset. Dashed lines represent the 10th percentile. (c) Visualisation of the MSD-net’s median example for each network.
The pixel wise scores in (a) do not properly represent the result in (c).

fact that all atoms are not perfectly placed. The number
of false positives and false negatives here correspond to
the shift of the atoms, however the same number of false
positives and false negatives could arise from a situation
with more precisely predicted atoms and a number of com-
pletely missing or excess predicted atoms. This highlights
the need for the atomic F1-Score as a reasonable metric.
The mis-positioning is on the order of tens of picometres,
presenting that this method is achieving picometre resolu-
tion determination of multi-component atomic columns.

The atomic F1-Score is used instead in Figure 7, where
the histogram in Figure 7a presents a bimodal distribution,
with one mode around the 10th percentile scores. Figure
7b shows that this cluster of scores is occuring for defocus
values outside the range of the training set, highlighting
that these networks are not able to generalise outside the
range of defocus values used for training. In Figure 7c it
is clear that the low score is sensible as all networks show
considerable weaknesses in identifying the defects of this
focal series.

As a final note we train networks to solve the same
problem, but instead with a single image, and a focal se-
ries of 2 images. Figure 8 shows the atomic F1-Score for a
single image, focal series of 2 images, and a focal series of
3 images, from left to right, imaged with the conditions in
Table 1. There is a large improvement from a single image
to a focal series of two images, and minor improvement
from a focal series of two to three images, which high-
lights the ability of each network to utilise the extra level
of information in the focal series to differentiate between
atomic column intensities, however a focal series of 20 im-
ages would not be necessary, reducing the time resolution
of atomic position probing in TEM substantially.

4. Conclusions

It has been shown that neural networks are able to clas-
sify atomic columns in a multi-component material sam-
ples, in this case MoS2, where the atomic columns of in-
terest are 1Mo, 2S, and 1S columns. The networks ex-
ceed human performance. This is a challenging task, since
HR-TEM intensities are not as interpretable as, for exam-
ple, STEM image intensities. Typically, image averaging
is used to interpret such intensities, however the neural
networks require only a focal series of 3 images, imaged
at a defocus step of 50 Å. This allows for probing atom
dynamics with a fine temporal resolution.

The neural networks do not generalise to defocus value
outside the training range, so the networks must be trained
to the defocus range that the user plans to work with.
The neural networks do not see much improvement when
increasing the number of trainable parameters from 105 to
107 parameters, and do not require more than 100 images
to train.

An ”atomic” F1-Score was introduced that truly gauges
how well the neural networks are identifying atomic columns,
without the need for pixel wise precision, which revealed
that all atomic columns are being identified with the pi-
cometer resolution.

Neural network atomic column identification serves as
a promising candidate for tracking changes in the atomic
configuration, most importantly defect formation, when
exposing samples to varying conditions such as changing
electron doses.
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Figure 6: Difference between the 1S class of the median example presented in Figure 5

(a)

(b)

(c)

Figure 7: Performance of each network on the test dataset with a defocus range outside the training dataset range. (a) Histogram of atomic
F1-Score for each network. (b) Atomic F1-Score versus the minimum defocus value in the focal series. Dashed lines in (a) and (b) represent
the 10th percentile. (c) MSD-net’s 10th percentile example for each network.
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(a) (b) (c)

Figure 8: Ability of all three networks to classify Mo, 2S, or 1S columns given (a) a single image, (b) a focal series of 2 images, or (c) a focal
series of 3 images. Dashed lines represent the 10th percentile.
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APPENDIXA
Appendix

A.1 An Example of a User Defined Input Parameters File
for the Software Pipeline

# Specify the type of task by the type of label
# Mask , Blob , Disk , Gaussian , Exitwave
’label ’: "Mask",
#’label ’: "Disk",
#’label ’: "Exitwave",

# Number of images (at different microscope parameters)
# per exit wave. (Only applies to training data)
’image_epochs ’: 10,

# Size of the images during training (x, y)
’image_size ’: (512, 512),

# Stochastic noise model to apply
# poisson - shot noise approximation
# None - no noise
’noise ’: "poisson",

# Number of classes in output of network , including the background
# class. Setting num_classes =1 means just a single class , no
# background. Otherwise , num_classes should be one higher than
# the number of actual classes , to make room for the background
# class.
’num_classes ’: 1,
#’num_classes ’: 4,

# Should there be a background class?
’null_class ’: True ,

# Spot size of atomic columns in Angstrom
’spotsize ’: 0.4,

# Image resolution range in pixels/Angstrom
#’sampling ’: (0.17, 0.18) ,
’sampling ’: (0.07, 0.08),
#’sampling ’: (0.09, 0.11) ,

# Focal series if not None.
# (number of images , change in focus , random part of change ).
’multifocus ’: None ,
#’multifocus ’: (3, 50.0, 1.0),
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## Noise parameters
# Range of the logarithm (base 10) of the dose in electrons/A^2
’log_dose ’: (2, 6),

# Range of blur
’blur’: (0.1, 0.8),

# Range of focal spread
’focal_spread ’: (5, 20),

## CTF Parameters (values from microscope at Nanolab)
# Defocus range in Angstrom
’defocus ’: (-200, 200),
# Spherical abberation in Angstrom (1 micrometer = 1e4 A)
’ctf_c30 ’: (0, 1.5*83000) ,
# 2-fold astigmatism in Angstrom
’ctf_c12 ’: (0, 0),
# Axial coma in Angstrom
’ctf_c21 ’: (0, 0),
# 3-fold astigmatism in Angstrom
’ctf_c23 ’: (0, 0),
# Star abberation in Angstrom
’ctf_c32 ’: (0, 0),
# 4-fold astigmatism in Angstrom
’ctf_c34 ’: (0, 0),
# 5-fold astigmatism in Angstrom
’ctf_c45 ’: (0, 0),

## MTF Parameters
# Deterministic modulation transfer function to apply
# None - no mtf (flat spatial distribution)
# parametric (c1 ,c2 ,c3)
"mtf": "parametric",
# Range of MTF parameters
’mtf_c1 ’: (0.2, 0.6),
’mtf_c2 ’: (0.0, 0.0),
’mtf_c3 ’: (2.0, 5.0),

## Readout noise (constant lambda for additional poisson noise
## from the detector)
’readout ’: (0.005 , 0.015) ,

# normalization distance in Angstrom
’normalizedistance ’: 12.0,

# How many images to save in debug folder (None=none , True=all).
’debug ’: 100,

# Seed for reproducibility
’seed’: 100

Listing A.1: An example of an input parameters file from Table 3.2, which presents the vari-
ous options the user has to set to prepare a neural network for a specific task and experimental
data set in the software pipeline.
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A.2 More Instructions on Unix Command-Line Usage

$ python train_imageepochs.py [Epochs]
[Training Data] [Validation Data] [Output Folder]
Optional: --restart [Restart from epoch number]
Optional: --regularize [Amount of L2 regularization. Default:Disabled]
Optional: --epochsave [Epoch interval for saving network]
Optional: --adam [Adam optimiser passed as dict with parameters]
Optional: --rmsprop [RMSProp learning rate]
Optional: --limitdata [Truncate training data at a given number]

Listing A.2: An instruction on the Unix command-line usage of the Python script for training
a U-net.

$ python train_uplusplus.py [Epochs]
[Training Data] [Validation Data] [Output Folder]
Optional: --restart [Restart from epoch number]
Optional: --regularize [Amount of L2 regularization. Default:Disabled]
Optional: --epochsave [Epoch interval for saving network]
Optional: --adam [Adam optimiser passed as dict with parameters]
Optional: --rmsprop [RMSProp learning rate]
Optional: --limitdata [Truncate training data at a given number]

Listing A.3: An instruction on the Unix command-line usage of the Python script for training
a U-net++.

# Data Generation (Atomic Models , Exit waves , Sites)
$ python make_fcc_cluster_supported.py example_data Au 3 1000
$ python make_fcc_cluster_supported.py example_data Au 3 500 --test

# Data Generation (Images and Labels)
$ python make_image_data.py example_data example_input_parameters.json
$ python make_image_data.py example_data example_input_parameters.json

--test

# Neural Network Training (U-net)
$ python train_imageepochs.py 100 example_data example_data -test

example_network

Listing A.4: Example of running the data generation and neural network segment of the
workflow, where a training and validation/test data set of CeO2 supported Au nanoparticles
with a maximum off zone axis tilt of 3◦ are generated with images and labels defined by an
input parameters file and a U-net is trained.
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A.3 A Collection of the Method Attributes for the
Python Objects for Handling Simulated and
Experimental HR-TEM Data in the Software Pipeline

Table A.1: Python objects for handling and analysing both simulated
and experimental data. *( ... ) will represent necessary user input -
refer to the GitLab repository.

Class Simulated_Data
Initialises with a path to a .npz containing a simulated image and label, a .json input
parameters file containing data parameters, and a .json parameters file with specific ctf
parameters.
Attributes Descriptions
load() Loads the image, label, and sampling, as instance at-

tributes.

cp_local_standardise() Performs the local standardisation defined in Eq. (3.1)
utilising CuPy [110] to accelerate Gaussian convolu-
tions.

infer( ... ) Applies a trained neural network to the image. A Keras
model is provided by the user.

get_F1_score() Returns the F1-Score between the prediction and label.

get_mse_score() Returns the MSE-Score between the prediction and la-
bel.

plot() Plots the image and label, with scale bars.

Class Experimental_Data
Initialises class with just a path to an experimental file (.dm3/.dm4, or TIFF).

Attributes Descriptions
load() Loads the experimental data using Hyperspy along with

metadata such as the sampling in nm/pixel.

cp_local_standardise() Performs the local standardisation defined in Eq. (3.1)
utilising CuPy [110] to acceleration Gaussian convolu-
tions.

Continued on next page
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Table A.1 – continued from previous page
infer( ... ) Applies a trained neural network to the image. A Keras

model is provided by the user.

crop() Crops the ROI using the mask segmentation. This for
example crops a nanoparticle out of an image contain-
ing vacuum and substrate.

fft() Returns the Fourier transform of the Image. If crop()

was applied, the fft will be performed on the cropped
image, allowing fft extraction of the nanoparticle absent
of any surroundings.

compute_dose( ... ) Uses the region defined by corner and window size
(should be a vacuum area) to compute the frame’s elec-
tron dose based on the metadata. User provides the
corner and window size.

plot() Plots the image and label, with scale bars.
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Amid the rise of artificial intelligence (AI), the world is beginning to witness the power of big-data
drivenmachine learningmodels inmany contexts. From your smart phone to your bank, machine
learning models are paving the way we interact with our surroundings and make decisions that
should maximise our safety, happiness, and fortune in the years to come. Fret not, as there aren’t
any indications of an AI takeover of society, but merely tools that can automate much of the
work we’re already doing.

Companies and research groups across the globe are investigating thewaysmachine learning
can bring value to their work - so what about the field of electron microscopy?

Most are familiar with the optical microscope from their high school labs. The electron micro-
scope made its debut in the early 1930s and earned its creators the Nobel prize due to its ability
to visualise objects at the atomic scale – that’s around 0.000000001 of a metre – where individual
atoms are visible. The electron microscope is the go-to machine for companies and researchers
to characterise and study materials. For some it may be to determine the quality of the synthesis
of a given material and for others it may be to investigate what interactions happen between a
material’s atoms with atoms from a surrounding gas.

Despite the benefits of electron microscopy, it remains a daunting task to operate these micro-
scopes and often requires years of expertise and countless hours at the lab. This thesis explores
the applications of deep learning to assist microscopists on their quest to gather data from the
atomic scale. Deep learningmodels – knownas neural networks - aremodels inspired by the func-
tions of the human brain and have proven themselves powerful at capturing complex features
in images of any kind.

This Ph.D. explores tools for microscopists to utilise the power of deep learning neural networks
to automate the analysis of high-resolution transmission electron microscopy images and extract
large-scale data. Tools have been investigated to provide microscopists with live approximate
chemical information to help them highlight areas of particular interest before manual analysis.
An investigation has also been made to see whether neural networks can exceed human-level
performance in seeing past noise and imperfections in the image and still extract the same qual-
ity of information.
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